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Abstract

This paper proposes a novel method to estimate productivity and quality of multi-product
firms at the firm-product level, together with transformation function and demand parameters.
The method utilizes firm optimization conditions to establish a one-to-one mapping between ob-
served data and unobserved productivity and quality, offering distinct advantages: it eliminates
the need for imputing firm-product input shares or imposing productivity evolution processes,
while also exhibiting scalability to accommodate numerous products and the capability to
address the bias caused by unobserved heterogeneous intermediate input prices. We apply
this method to a set of Mexican manufacturing industries. We find that multi-product firms’
better-performing products have both higher productivity and higher quality, with the former
emerging as a stronger predictor of within-firm performance. However, firms face a trade-off
between quality and productivity, which we refer to as the cost of quality. The cost of quality
is higher for more differentiated products and declines with product age. In a counterfactual
exercise, we show that a reduction in the cost of quality can lead to substantial firm-level
productivity gains and that, on average, about 30.3 percent of these gains are due to the
within-firm reallocation of production. Notably, a larger product scope allows more room
for intra-firm resource reallocation, leading to higher productivity gains. This reveals a new
mechanism for enhancing the performance of multi-product firms.
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1 Introduction

The production landscape of many manufacturing industries is dominated by multi-product firms,

which operate across a diverse range of product lines. However, existing empirical studies that

explore the determinants of firm performance have primarily focused on analyzing variations across

different firms, such as heterogeneity in productivity levels and demand characteristics (e.g., Foster

et al., 2008; Pozzi and Schivardi, 2016; Kumar and Zhang, 2019). Consequently, there remains

a considerable gap in the understanding of the factors that drive within-firm heterogeneity and

resource reallocation, as well as their subsequent impact on firm performance and growth. This

knowledge gap is mainly due to methodological limitations and data constraints, which hinder the

accurate estimation of different aspects of heterogeneity at the firm-product level.

Addressing this critical gap and building upon recent studies (e.g., Dhyne et al., 2022; Orr, 2022;

Valmari, 2022), this paper introduces an innovative method to estimate physical productivity

and quality (product appeal) at the firm-product level, along with the transformation function

and demand parameters. This method constructs a one-to-one mapping from observed data

to unobservable variables by leveraging firm optimization conditions. This provides distinct

advantages compared to the existing methods. First, it eliminates the need for imputing intra-firm

input allocations or relying on productivity evolution processes. Second, it is scalable to handle

a large number of products in monopolistically competitive markets. Third, it addresses the

estimation bias caused by heterogeneous firm-level intermediate input prices, which are usually

unobservable in commonly available data sets. Drawing on comprehensive firm-product-level data

from three major industries in the Mexican manufacturing sector, we employ this method to

study the trade-off between productivity and quality within firms, their relative importance in

determining intra-firm revenue heterogeneity, and the role of product scope in shaping firm growth

through intra-firm resource reallocation.

In modelling the production side, our method is designed to address the challenges commonly

faced in estimating multi-product production functions. The recent strand of production function

estimation methodologies implicitly assumes that each firm produces a single product (e.g., Olley

and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). In

this context, the input allocation is observable to researchers and each firm only has a single

dimension of unobservable productivity, which can be controlled for by an observable proxy.

Multi-product firms, on the contrary, may produce different products and thus have different

levels of productivity in these products, even within the same firm. Extending the proxy-based
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methods to the context of multi-product firms requires at least the same number of proxies

as the number of products (cf., Dhyne et al., 2022). Moreover, researchers do not observe the

within-firm division of inputs used to produce different products because firms usually only report

total inputs. The potentially heterogeneous ability of input sharing (e.g., machinery and workers)

across product lines within firms (e.g., Cairncross et al., 2023), which is observable to the firms

but is unobservable to researchers, further complicates the problem.1 Finally, intermediate input

prices, which significantly vary across firms and over time due to various reasons such as quality

differentiation, bargaining power in the input market, transport costs, and suppliers’ marginal

cost as documented by Atalay (2014) using US Census Bureau data, should be controlled for in

the estimation to avoid biased estimates of production function and input elasticities (i.e., input

price bias as emphasized in Ornaghi, 2006; De Loecker et al., 2016; Grieco et al., 2016). However,

only input expenditure (rather than input price and input quantity) is observable to researchers

at the firm level in commonly available data sets.

To address these issues, we model the production technology using a constant elasticity of

substitution (CES) transformation function, which transforms inputs into different products. The

inputs can be shared in production across products within the same firm. Each product is associated

with a potentially different level of physical productivity (i.e., quantity-based productivity, as in

Foster et al., 2008).2 The firm observes these productivity levels before making input and output

decisions to maximize profits. In the spirit of Grieco et al. (2016), we show that the optimization

conditions implied from our model can always be inverted to form an explicit one-to-one mapping

from observed input and output decisions to unobserved productivity at the firm-product level

(regardless of the number of products), while controlling for unobserved intermediate input prices.

We use the inverted relationship to substitute unobserved productivity to estimate the parameters

of the transformation function. Once the parameters are estimated, we compute productivity at

the firm-product level from the one-to-one mapping.

In modelling the demand side, we adopt a commonly used CES demand function. The firm’s

products are chosen from a set of horizontally differentiated categories. Within each product

category, each firm’s product variety is vertically differentiated according to its quality level.

Because the optimal product prices are chosen after the firm’s decisions on the product quality

levels, we face a classic endogeneity problem in estimating the price elasticity of demand. The

1For example, a printing firm may use the same design software to create multiple products, such as logos and
product labels; workers with specialized skills, such as pattern makers and shoe designers, may be used across
different product lines within the same footwear firm; in pharmaceutical industries, a firm may use the same reactors
and mixing tanks to produce different products, by adjusting the formulation and process parameters.

2We refer to physical productivity as simply “productivity” in this paper unless explicitly stated otherwise.
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traditional solution is to use cost shifters (such as capital stock) as instrumental variables (IVs) for

the price to estimate the demand function directly. However, if the cost of producing high-quality

products is higher as suggested by the recent literature (e.g., Grieco and McDevitt, 2017; Forlani

et al., 2023; Li et al., 2023), then cost shifters may still be correlated with quality. Thus, we

depart from the existing literature to examine the advantage offered by intra-firm decisions in

multi-product firms – profit maximization of the firm implies a relationship between the revenues

of products within the same firm. This relationship depends on the demand elasticities and

intra-firm relative quality differences (as opposed to quality levels), which can be instrumented by

the commonly used firm-level cost shifters. Therefore, we use this relationship to help identify

the demand elasticities. We use Monte Carlo exercises to demonstrate that this approach is able

to recover the true parameters well. After the estimation, we compute quality as the residual of

demand after controlling for price in the spirit of Khandelwal (2010).3

We apply our method to establishment-level panel production data from three major Mexican

manufacturing industries (i.e., footwear, printing, and pharmaceuticals) that record prices and

quantities at the firm-product level along with rich input data at the firm level. Multi-product

production is an essential feature of the firms in our sample. Multi-product firms account for

around 65 percent of the total number of firms and 86% of total revenues, and their average number

of products is 6.7 per year, albeit with differences between industries. Within each industry, the

markets for different products (e.g., women’s shoes vs. men’s shoes in the footwear industry)

are largely segmented. Nevertheless, for each product, firms’ output is vertically differentiated,

as evidenced by the large dispersion in prices. These features are consistent with the model’s

assumption of a monopolistically competitive market structure with vertically differentiated

products.

After estimation, we first follow the literature (e.g., Melitz, 2000) to construct a (firm-product)

quality-adjusted productivity (ATFP) measure that accounts for heterogeneity in both productivity

and quality. We find significant dispersion of ATFP across firms, even conditional on the product.

More importantly, both components of ATFP (i.e., productivity and quality), are important for

the within-firm performance of multi-product firms. Products closer to the core competence of

the firm (defined by the highest revenue within firms) have both higher productivity and higher

quality. However, differences in productivity across products within a firm turn out to be a

3Of course, the residual of demand is essentially demand heterogeneity which embodies a set of demand shifters.
We leverage the rich fixed effects offered by the firm-product level data to refine the demand residual as a measure
of quality in the empirical exercises. Nonetheless, we acknowledge that the refined measure of quality may still have
different components, such as product appeal perceived by consumers, if they vary at the firm-product-time level.
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stronger determinant of within-firm performance, as measured by product rank in terms of either

level or growth of sales.

These different dimensions of within-firm heterogeneity are not, however, unrelated to each other.

Within a firm, improving quality at the product level comes at the cost of reducing productivity.

This result is broadly consistent with the emerging literature highlighting the trade-off across

firms between these two unique dimensions of firm heterogeneity (e.g., Jaumandreu and Yin, 2014;

Grieco and McDevitt, 2017; Roberts et al., 2018; Atkin et al., 2019; Orr, 2022; Eslava et al., 2023;

Forlani et al., 2023; Li et al., 2023). Intuitively, producing one unit of a high-quality product may

require more (or longer) production processes, better (or more specialized, exclusive) machinery,

higher quality (or more) intermediate materials, and higher standards of quality control, all of

which lead to a lower quantity of output holding inputs fixed and consequently an increase in

marginal cost of production (or lower productivity, equivalently). After controlling for a rich set

of fixed effects, offered by the advantage of using data at the firm-product level, as well as using

different sets of IVs, we find that, on average, a 1 percent increase in quality reduces productivity

by 0.198 percent, holding all other variables constant. Moreover, this trade-off is heterogeneous –

it is stronger for more differentiated or younger products. This result suggests that, while it is

more costly to produce a high-quality level of more differentiated products, long experience in

producing a particular product allows the firm to improve quality with less sacrifice in efficiency.

Quantitatively, the cost of quality bears significant implications for firm productivity growth

and intra-firm resource allocation. A reduction in the cost of quality not only directly increases

the firm’s ATFP but also indirectly influences it through the firm’s endogenous reallocation of

resources towards the production of higher-quality products. This is due to the positive relationship

observed between ATFP and product quality within the firm (correlation coefficient: 0.440). In a

counterfactual analysis, we find that a 1 percent reduction in the cost of quality corresponds to an

average 2.562 percent improvement in firm-level ATFP. Notably, a substantial 30.3 percent of this

improvement can be attributed to the within-firm reallocation of production towards high-quality,

high-ATFP products.

Importantly, our findings reveal that the impact of the quality cost reduction on firm performance

is particularly pronounced for multi-product firms with larger product scope. This is because

a broader product scope provides these firms with greater flexibility for intra-firm resource

reallocation, resulting in a higher gain in ATFP when the cost of quality decreases. This result

uncovers a novel mechanism for productivity growth for multi-product firms, which dominate
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manufacturing production. Their ability to leverage a larger range of products through reallocation

allows them to capitalize on the opportunities arising from reduced quality cost, thus boosting

their overall productivity.

In terms of methodology, our paper builds on recent advances in the estimation of heterogeneity

within multi-product firms. In addressing the common data challenge of input data being

observable only at the firm level, while outputs and revenues are reported separately by product,

the literature has evolved into two main approaches. The first approach, pioneered by De Loecker

et al. (2016), characterizes multi-product production as a collection of single-product production

functions, coupled with a rule for allocating firm inputs to each of these functions. Subsequent

studies have extended this approach. In particular, Orr (2022) models product lines sharing

the same technology (i.e., production parameters) but with individual efficiency shocks, and

shows how demand data can be used to assist estimation under profit maximization conditions.

Valmari (2022) develops a similar framework, incorporating flexible production parameters across

different product production functions. Chen and Liao (2022) generalize the previous papers by

allowing single-product firms and multi-product firms to have different production functions and

by estimating both non-parametric and parametric production functions for multi-product firms.

In contrast, the second approach, led by Dhyne et al. (2022), departs from the assumption that

multi-product production is a collection of single-product firms. They introduce a transformation

production function and show how it can be used to recover the production frontier and estimate

firm-product-specific marginal costs, taking into account complementarities and spillovers in

multi-product production.

Our methodology integrates the strengths of both approaches to overcome their respective

limitations. First, we model multi-product production using a transformation production function,

similar to Dhyne et al. (2022). This avoids the need to allocate firm-level inputs, as in Orr

(2022) and Valmari (2022), and allows for intra-firm input sharing across product lines, which

may contribute to economies of scope in multi-product production. Second, in addressing

unobserved firm-product productivity, we adopt the profit maximization assumption, similar to

Orr (2022) and Valmari (2022). However, instead of imputing input allocation shares, we use

the profit-maximizing conditions to establish a one-to-one mapping from observed firm decisions

to unobserved productivity, extending the insights of Grieco et al. (2016, 2022), Harrigan et al.

(2021) and Li and Zhang (2022) to the context of multi-product firms. Importantly, the number

of profit-maximizing conditions, which naturally increase with the number of products, ensure the

scalability of our method. This differs from Dhyne et al. (2022), which requires a separate proxy
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for each additional firm-product-level productivity. Third, our method addresses the bias due

to unobserved firm-level heterogeneity in input prices without requiring the availability of input

price data. This is in contrast to the existing methods (e.g., Orr, 2022; Valmari, 2022), which

typically require access to such data. Finally, our method does not rely on modelling the evolution

of productivity, which offers a distinct advantage in exploring the evolution of productivity after

estimation. Such an advantage is particularly beneficial in studying factors that endogenously

shape the productivity trajectory (e.g., Chen et al., 2021) or frequent product turnover decisions,

such as for exported products, where the observation of products is truncated by latent variables.

Regarding the application, our paper contributes to the literature that analyzes the role of

productivity and quality in driving firm performance. Based on cross-firm analysis using firm-level

data, a growing literature shows that demand is at least as important as productivity in explaining

firm turnover and growth (e.g., Foster et al., 2008; Pozzi and Schivardi, 2016). By using data at the

firm-product level, our paper is closely related to the literature on multi-product firms, which has

long focused on cost (productivity) and quality as determinants of within-firm relative performance,

measured as the sales rank of products (e.g., Berman et al., 2012; Chatterjee et al., 2013; Mayer

et al., 2014, 2021; Eckel et al., 2015; Arkolakis et al., 2021). To our knowledge, an empirical

investigation of the relative merits of these different determinants of within-firm performance is

lacking in the literature due to methodological limitations in estimating productivity and quality at

the firm-product level. We complement the literature by uncovering rich dimensions of within-firm

heterogeneity and showing that productivity plays a more important role in shaping heterogeneous

revenue and growth within firms.

Our paper also contributes to the recent literature analyzing the trade-off between productivity

and quality (i.e., the cost of quality). Focusing on the healthcare industry, Grieco and McDevitt

(2017) show that reducing the quality standards of a healthcare center can increase its patient

load. Atkin et al. (2019) reveal a reverse correlation between quantity productivity and quality

productivity among rug-makers in Egypt, drawing insights from data that include direct quality

assessments. Forlani et al. (2023) document a strong negative correlation between demand and

quantity-based productivity in various Belgian manufacturing industries. Using an objective

measure of output quality, Li et al. (2023) find that about half of the benefits of quality are offset

by the cost of producing the quality in the Chinese steel industry. These papers document such

a trade-off across firms. Our paper advances the finding by showing a similar trade-off at the

firm-product level. To this end, our analysis is consistent with the negative relationship between

productivity and “product appeal” documented at the same level of disaggregation by Orr (2022).
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We further show that the cost of quality is heterogeneous across degrees of product differentiation

and varies with product age. Nonetheless, after taking both the cost and the benefit of quality into

account, ATFP is documented to be positively correlated with quality. This result is consistent

with endogenous quality choice models (Kugler and Verhoogen, 2009, 2012) and empirical analysis

using an objective quality measure by Li et al. (2023).

Finally, our paper is related to a large literature on resource reallocation, which focuses on

across-firm analyses and shows that much of the aggregate productivity growth is attributable

to the resource reallocation towards more productive firms (e.g., Baily et al., 1992; Bartelsman

and Doms, 2000; Baily et al., 2001; Aw et al., 2001; Foster et al., 2006, 2008; Syverson, 2011;

Collard-Wexler and De Loecker, 2015). Complementing the literature, our counterfactual analysis

shows that there can be a substantial contribution to productivity growth due to within-firm

resource reallocation – a mechanism that is emphasized in the recent literature studying multi-

product firms (e.g., Mayer et al., 2021). Importantly, we focus on the channel of the cost of quality

and document a positive relationship between product scope and the contribution of intra-firm

resource reallocation. This result illustrates the quantitative importance of intra-firm resource

reallocation within multi-product firms due to quality differences as a novel channel affecting

overall productivity at the firm level.

In the rest of the paper, Section 2 develops a framework to describe the production and demand

functions and the firm’s endogenous decisions on output, quality, product scope, and investment.

Section 3 describes the methodology and steps for estimating the production and demand functions.

Section 4 describes the data used in the estimation. Section 5 presents the estimation results.

Section 6 documents the trade-off between productivity and quality and examines their role in

shaping intra-firm heterogeneity. Section 7 quantitatively illustrates the significance of the cost of

quality and the role of product scope in intra-firm resource reallocation using a counterfactual

exercise. We conclude in Section 8.

2 Model

This section develops a framework to describe the firm’s static production decisions. Our empirical

estimation utilizes the static optimization conditions implied by this framework. We also sketch

out firms’ dynamic choices with respect to output quality, product scope, and investment, which

provide conceptual insights regarding how these dynamic choices are endogenously determined.

Consider an industry with J firms indexed by j = 1, 2, . . . , J . There is a total of N products,
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indexed by n = 1, 2, . . . , N , that firms can choose to produce. The timeline of the decisions is as

follows. At the beginning of period t, the set of products that firm j has decided (at the end of the

previous period) to produce in this period is Λjt. Each product n ∈ Λjt is associated with a level

of technical efficiency ωjtn and a level of quality ξjtn, both of which have been determined and

observed by the firm at the end of the previous period. The firm’s capital stock is also determined

in the previous period via a capital investment decision.

The firm’s static decisions in the current period consist of the material input, labor input, and

quantities of individual products to maximize its total period profit subject to demand and

production functions, after observing the material price, wage rate, and capital stock. At the

end of period t, the firm makes dynamic decisions on the capital stock and the set of products to

be produced with their levels of product quality and technical efficiency for the following period,

after observing the associated adjustment or investment costs.

2.1 Demand

The entire set of products that the firm can choose to produce is divided into N horizontal

categories, such as women’s and men’s shoes. For each product category n ∈ {1, 2, . . . , N}, the

output of each firm is vertically differentiated according to its choice of quality level Ξjtn. This

means that, although the demand for each of the N product categories is segmented, there is

monopolistic competition across firms that produce vertically differentiated products in the same

category. This assumption is also adopted by De Loecker (2011) and Valmari (2022) in modelling

the demand functions in the multi-product context.4

Specifically, for each product category n, a representative consumer has constant elasticity of

substitution (CES) preferences in terms of both the quality and the quantity of the products

offered by firms:5

Utn =

∑
j

(Ξ
1

ηn−1

jtn Qjtn)
ηn−1
ηn


ηn

ηn−1

, (1)

where ηn > 1 is the elasticity of substitution across the varieties offered by the firms. Qjtn is the

physical quantity and Ξjtn is the product quality produced by firm j in period t, respectively.

4Orr (2022) allows for a more flexible demand structure with cannibalization across products. Nonetheless, at the
level of product classification of our data, markets of different products are largely segmented, as will be discussed
in Section 4. Thus, we abstract away from the across-product competition. This also implies that our setup is
suitable to model firms manufacturing products for different (or segmented) markets, such as exporters selling to
different destination markets.

5The power of Ξjtn,
1

ηn−1
, is used to simplify the notation to reach a commonly used demand function (2). A

large literature that treats demand residual as output quality implicitly shares the same setup (e.g., Melitz, 2000;
Khandelwal, 2010; Pozzi and Schivardi, 2016; Valmari, 2022).
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That is, the consumer values the quality-adjusted quantity of the product, Ξ
1

ηn−1

jtn Qjtn, which

forms the basis for constructing the quality-adjusted productivity in Section 5.

Given the consumer’s total expenditure Btn and the product price Pjtn, the consumer’s utility

maximization problem implies the following demand function for product n from firm j:

lnQjtn = −ηn lnPjtn + ξjtn + ϕtn + ψjn + vjt, (2)

where ξjtn = lnΞjtn. Intuitively, a higher quality level shifts the demand curve upwards. Beyond

quality, three other components also influence demand. First, ϕtn = ln

(
Btn∑

j ΞjtnP
1−ηn
jtn

)
is a

product-specific expenditure index that depends on macroeconomic conditions captured in Btn

such as consumer income and market size in period t. Second, ψjn represents factors that affect

demand at the firm-product level but do not vary over time such as consumers’ subjective tastes,

brand image related to specific products, number (or variety) of subcategories contained in each

product category under our classification and product measurement units (e.g., grams vs. liters).6

Finally, vjt captures the demand heterogeneity such as firm effort in marketing that varies by firm

and year. For the purpose of demonstration, we summarize the structural terms that shift the

demand function as ξ̃jtn = ξjtn + ϕtn + ψjn + vjt. The firm observes ξ̃jtn for all products before

making production decisions.

Remark: Essentially, ξ̃jtn is a demand shifter, which captures all sorts of demand heterogeneity

that influences product demand but is not accounted for by product prices. Empirically, ξ̃jtn

is usually referred to as “perceived product appeal/demand” (e.g., Pozzi and Schivardi, 2016;

Orr, 2022; Valmari, 2022; Eslava et al., 2023) or “quality” (e.g., Melitz, 2000; Khandelwal, 2010;

Hottman et al., 2016). In our paper, we follow this tradition of notation and acknowledge that it

embodies quality (ξjtn) as well as non-quality components, such as consumer tastes, brand/firm

image, marketing efforts and market size. Yet, our setting with multiple-product firms provides us

with a rich set of fixed effects at the product-year (ϕtn), firm-product (ψjn), and firm-year (vjt)

levels to control for the non-quality component that varies at these levels. For this reason, we

define χjnt = ϕtn + ψjn + vjt and refer to χjnt as a demand shock in this paper. Notably, this

advantage is not available in the traditional across-firm analysis (i.e., using firm-level data), and

thus it helps to tease out a finer measure of quality (i.e., ξjtn) from residual demand (i.e., product

appeal, ξ̃jtn = ξjtn + χjnt) that is traditionally used as quality.

6Units of measurement can be different across product categories. Consequently, the quantities and prices of
different product categories are not readily comparable. In the demand function (2), ψjn absorb such differences.
Similarly, in our empirical analysis in Section 6, we use firm-product dummies to tease out ξjtn from such differences.
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2.2 Production Technology

We use a transformation function to model the production technology. Specifically, given the set of

products to be produced (Λjt) and associated product appeal (ξ̃jtn, n ∈ Λjt), the firm uses labor

(Ljt), material (Mjt), and capital (Kjt) to produce output quantity (Qjtn, n ∈ Λjt) following a

constant elasticity of substitution (CES) transformation function:7

∑
n∈Λjt

e−ω̃jtnQjtn = F (Ljt,Mjt,Kjt) ≡
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ
, (3)

where ω̃jtn is the Hicks neutral, quantity-based productivity (i.e., so-called physical productivity,

or TFPQ) of firm j in producing product n in period t. In this paper, we use quantity-based pro-

ductivity, TFPQ, and productivity interchangeably. γ ≡ σ−1
σ governs the elasticity of substitution

across inputs, i.e., labor, material, and capital. ρ is a parameter for the returns to scale in the

transformation of inputs into output. αL, αM , and αK are distribution parameters associated

with labor, material, and capital, respectively. We normalize their sum to 1.

Remark: A few features of the transformation function are worth noticing. First, the transfor-

mation function and the modelling of productivity are compatible with the single-product CES

production functions traditionally used in the literature. To see this, consider a firm producing

only a single product with quantity Qjt. In this case, the transformation function degenerates

into Qjt = eω̃jt

[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ
.

Second, for multi-product firms, the transformation function can be interpreted as the frontier

of joint production of all products, Qjtn, n ∈ Λjt. This interpretation has three implications:

(i) different products are manufactured with the same set of inputs (i.e., labor, material, and

capital); (ii) the inputs can be costlessly transferred across different products within the firm;

(iii) producing more of one product means producing less of another product, holding inputs

fixed. These implications are consistent with the modelling assumptions used by Dhyne et al.

(2022), Orr (2022), and Valmari (2022). In our context, although the quantity substitution of

one product and another is linear, the rate of substitution between them is determined by their

7A similar transformation function is adopted by Cairncross et al. (2023), who derive the transformation function
(as a general output distance function) from individual product production function with shared inputs across
products. In fact, the transformation function (3) in our setup is a restricted version of the output distance function
proposed by Cairncross et al. (2023), which includes a CES aggregator on the output side with a parameter θ:∑

n∈Λjt

[e−ω̃jtnQθ
jtn]

1
θ = F (Ljt,Mjt,Kjt) ≡

[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ .

Our restriction is θ = 1. In this restricted setup, ρ > 1 implies that there is input sharing in production, as shown
Cairncross et al. (2023).
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relative productivity, which flexibly varies at the firm-product-period level.

Third, conditional on inputs, the output of a product does not only depend on its own productivity

but also the productivity levels of other products. This can be observed from a two-product

example of (3): Qjt1 = eω̃jt1

[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ − eω̃jt1−ω̃jt2Qjt2. This is analogous to

the transformation function proposed by Dhyne et al. (2022), with one key difference in terms

of how productivity is defined. We explicitly model how the output of a product depends on

its own productivity (i.e., ω̃jt1) as well as the productivity levels of other products (via the

difference, ω̃jt2 − ω̃jt1). As a result, our definition and identification of product 1’s productivity

is the transformation efficiency from inputs to output of product 1, conditional on not only the

(observable) output of product 2 but also the (unobservable) productivity difference between

the two products.8 The (unobservable) productivity difference, if any, will be reflected by price

differences across products within the same firm. We use such an insight to identify productivity

differences and ultimately productivity levels in Section 3.

Finally and more importantly, our transformation function allows for shared inputs or the joint

utilization of inputs across different products, which may contribute to economies of scope in the

spirit of Panzar and Willig (1977, 1981). In fact, input allocation within a firm is not explicitly

modelled in our framework. This methodology is in contrast to the existing methods that rely on

imputing the intra-firm (exclusive) allocation of inputs and thus abstract away from imperfectly

divisible inputs with properties of a public good within a firm.

The quantity-based productivity ω̃jtn in (3) varies by firm, product, and period. While we do not

impose restrictions on ω̃jtn to estimate the parameters in (3) as will be shown in Section 3, in the

rest of this subsection we discuss the potential components and evolution of ω̃jtn to highlight the

key differences compared with the assumptions in the existing literature.

Departing from the literature, we unpack productivity into two components:

ω̃jtn = ωjtn − h(ξjtn), (4)

where ωjtn is technical efficiency and h(ξjtn) is a function of product quality ξjtn. It is crucial

to model h(ξjtn) as a part of quantity-based productivity because varieties of the same product

category produced by different firms can be vertically differentiated by their quality levels.

Intuitively, producing one unit of the high-quality product may require more production procedures

8Dhyne et al. (2022) model such a difference as a constant, product-specific parameter. We relax it as a
productivity difference that can vary by firm, product, and time.
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(e.g., longer refinements in the steel industry in Li et al., 2023), better (or more specialized, exclusive)

machinery, higher-quality (or more) intermediate materials, higher standards of quality control

(e.g., lower septic infections rate in the healthcare industry Grieco and McDevitt, 2017), and extra

dedicated workers (e.g., promoting quality or demand rather than production as discussed by

Bond et al., 2021). In turn, this leads to a lower quantity of output, holding the inputs fixed, and

thus it implies an increase in the marginal cost of production (or equivalently a lower productivity).

For this reason, we refer to h(ξjtn) as the cost of quality.9

As a result, differences in quantity-based productivity can be due to not only technical efficiency

but also the cost of quality. Theoretically, explicitly modelling the cost of quality h(ξjtn) as a

component of productivity allows for a trade-off between product quantity and quality, conditional

on inputs. From an empirical perspective, this also implies that comparisons of quantity-based

productivity across firms and over time require control for quality differences. Accordingly, we

deal with ω̃jtn as a whole rather than its components (ωjtn and h(ξjtn)) when estimating (3) in

Section 3, and we explore the trade-off between (quantity-based) productivity and output quality

in Section 6 after they are estimated.

While our empirical model does not rely on the evolution of productivity, we include it to facilitate

the modelling of dynamic decisions in Section 2.4. Specifically, we model the evolution of ωjtn as

a flexible, endogenous Markov process:

ωjt+1n = gn(ωjt, Ijt) + vjt+1n, ∀n = 1, 2, . . . , N, (5)

where gn(·) is a function specific to product category n, vjt+1n is an innovation term, and Ijt is firm-

level investment (such as investment in research and development as emphasized by Doraszelski

and Jaumandreu, 2013) that influences the future path of technical efficiency. Importantly,

ωjt = (ωjt1, ωjt2, . . . , ωjtn) is a vector of firm-product level technical efficiency of all products

of firm j in period t.10 That is, the evolution process of the technical efficiency of one product

can be influenced by the previous levels of technical efficiency of other products due to, for

instance, intra-firm technology spillovers. The firm observes the realization of ωjt before making

the production decisions specified below in Section 2.3.

9Note that the term cost of quality in this paper refers only to the impact of quality on the marginal cost of
production, rather than the overall cost of quality (including research cost for new products with higher quality,
which is more dynamic in nature, or the installation cost of new equipment to produce higher quality products,
which are usually one-time fixed costs).

10The firm observes the evolution processes of all products, even if the firm only selectively produces a subset of
products.

12



Remark: Our modelling of the evolution processes is different from that of the literature in

three aspects. First, we model the evolution of the underlying technical efficiency rather than

quantity-based productivity as in the literature. When quality is an endogenous choice made by

the firm and has an impact on quantity-based productivity, quantity-based productivity may no

longer evolve in an auto-regressive way, even if the underlying technical efficiency is auto-regressive.

Second, we allow the evolution processes to be interdependent across products. From a computa-

tional perspective, adopting and estimating such flexible evolution processes would add a significant

computational burden to the existing proxy-based approach in dealing with firms producing many

products. Fortunately, our estimation methodology utilizes the first-order conditions of profit

maximization to map observable firm input, output, and price choices to unobservable productivity,

without relying on the evolution processes, as will become clear in Section 3. This feature is in

contrast to the existing estimation methods (e.g., Orr, 2022; Valmari, 2022), which rely on the

evolution assumption of productivity and thus exclude a flexible interdependency of productivity

among different products.

Third, the literature usually only models the evolution processes of manufactured products due to

data and computational limitations. However, this approach potentially suffers from an endogenous

selection problem because firms only manufacture products when they are profitable. This problem

could be severe if the product turnover (i.e., adding and dropping products) is frequent. An

appropriate approach is to model the evolution processes of all products. But this imposes a

challenge in dealing with the latent variables that determine product selection, which is usually

dynamic. Our estimation methodology saves us from the data and computational challenges,

because it does not rely on the productivity evolution processes.

2.3 Static Decisions: Inputs and Outputs

At the beginning of period t, the firm observes the vector of state variables, which includes the prod-

uct scope, capital stock, intermediate input price, wage rate, technical efficiency, and product qual-

ity of all the products. We summarize the state variables in sjt = (Λjt,ωjt, ξjt,Kjt, PMjt, PLjt,χjt),

where ωjt, ξjt and χjt are the vectors of technical efficiency, product quality and demand shocks

of all the products of firm j in period t, respectively. Note that the observation of technical

efficiency and product quality implies that the firm also knows productivity, ω̃jt, because the

firm knows the trade-off (4). PMjt and PLjt are the firm-level material price and the wage rate,

respectively. Importantly, both of them can be different across firms and vary over time.
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The firm’s objective is to maximize its total profit from all products in period t after observing

its state, by optimally choosing the quantity of material (Mjt), the quantity of labor (Ljt), and

the quantities of all the products to be produced (Qjt = {Qjtn}, n ∈ Λjt). Specifically, the period

(static) profit is:

π(sjt) = max
Qjt,Mjt,Ljt

∑
n∈Λjt

PjtnQjtn − PMjtMjt − PLjtLjt

subject to: (2) and (3). (6)

Remark: In commonly available data, while PLjt is usually observable to researchers as the wage

rate, PMjt is rarely recorded at the firm level. As documented by Atalay (2014) using US Census

Bureau data, PMjt can be significantly heterogeneous across firms due to geography, bargaining

power and access to the input market, suppliers’ marginal costs, etc. It is well understood that

such input price heterogeneity should be controlled for in the production function estimation to

avoid bias (i.e., input price bias as emphasized in Ornaghi, 2006; De Loecker et al., 2016; Grieco

et al., 2016). Recent developments in the estimation of multi-product production functions usually

assume the availability of PMjt (or a firm-level index of it, e.g., Orr, 2022; Valmari, 2022). In

contrast, our method is tailored to accommodate common situations where input prices vary at

the firm level but are unobservable to researchers. In particular, we maintain the assumption of

the literature that PMjt varies at the firm level (as opposed to the firm-product level) because

we model the production as a transformation function (rather than an individual production

plant for each product).11 We control for PMjt following the insights of Grieco et al. (2016, 2022),

Harrigan et al. (2021), and Li and Zhang (2022), as will be shown in Section 3. Consequently, our

empirical method for estimating multi-product production functions offers broader applicability in

commonly available datasets compared to existing methods.

2.4 Dynamic Decisions

This subsection briefly describes the dynamic decisions made by the firm as a completion of the

full model. At the end of each period t, the firm chooses the set of products to produce, their

associated quality levels, and investment in technical efficiency improvement (e.g., research and

development), for the next period (t+ 1). These decisions are made conditional on the current

state sjt = (Λjt,ωjt, ξjt,Kjt, PMjt, PLjt,χjt) and after observing the adjustment costs of product

scope and quality levels. Although the evolution of Kjt, PMjt, PLjt and χjt can be endogenous,

11This assumption holds if the input can be costlessly transferred across product lines within the firm, as assumed
by Orr (2022) and Valmari (2022).
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we remain agnostic on modelling their exact evolution processes because our estimation method

focuses on the static decisions and does not rely on how these variables evolve over time. The

adjustment costs of product scope capture the costs incurred by the firm to install and arrange

new production lines. The adjustment costs of product quality contain the costs of modifying the

production procedure and sourcing new suppliers of the material input to meet the new quality

levels.

In making decisions regarding product scope, quality levels, and investment, the firm is forward-

looking and takes into account the impact of the current decisions on the future paths of the state

variables. In particular, the firm knows that the choice of improving the quality of a product for

the next period will reduce the associated (quantity-based) productivity in the next period (i.e.,

due to the cost of quality). As a result, these decisions are dynamic.

Remark: Although we do not estimate the complex dynamic model in this paper (due to the

considerably high dimension of the state variables),12 the model serves the crucial purpose of

clarifying the (dynamic) choices made by the firm and their implications when we estimate the static

model. In particular, the dynamic model implies that even if the underlying technical efficiency

follows a simple AR(1) process, the resulting productivity (i.e., TFPQ) is not an AR(1) process

as assumed in the literature. To see this, note that quality ξjt+1n is endogenously determined by

the firm based on the state variable vector sjt, including the technical efficiency of all products

(i.e., ωjt). Considering the impact of quality on productivity shown in (4), productivity of any

product n in period t+1 depends on the entire state vector sjt in a highly nonlinear way. Ignoring

such interdependent relationships may potentially result in biased estimation. Fortunately, our

empirical method does not use any assumptions regarding how technical efficiency and productivity

evolve, as will be discussed in Section 3.

3 Estimation

In the estimation method, we focus on the static component of the model, which produces a set of

implications that can be used to estimate productivity and quality at the firm-product-period

level. The method is built upon the insights of Grieco et al. (2016, 2022), Harrigan et al. (2021)

and Li and Zhang (2022), who utilize the first-order conditions of static profit maximization to

control for unobservable variables in the production function estimation, but it is extended to

the multi-product setting where within-firm allocation of inputs is unobserved. Specifically, while

12For example, even in the footwear industry with only four products, the dynamic state includes at least 10
continuous variables – 4 variables for technical efficiency, 4 variables for product quality, and 2 for the material and
labor prices.
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researchers do not observe key variables such as productivity and quality, the firm observes them

before making optimal production decisions. Thus, the idea is to invert the implications from the

profit maximization problem to establish a unique one-to-one mapping from observable production

decisions to variables that are unobservable to researchers and control for them in the estimation

of the transformation function. Crucially, our model always admits such a mapping regardless of

the number of products.

Compared with the existing methods in the literature, our method has several important innovations

and advantages. The first advantage is scalability. Our method is readily applicable to industries

with many products because the method does not require proxies for product-level productivity, and

rather relies on static optimization conditions that naturally increase with the number of products.

Second, our method does not rely on productivity evolution processes. This enables researchers to

explore the productivity evolution after the estimation, contrary to the existing methods which rely

on productivity evolution for the estimation. More broadly, this advantage is useful in applications

when product turnover is frequent and endogenously depends on latent variables (e.g., in the

context of exported products). Third, our method models the production technology flexibly as a

transformation function. This saves us from potentially restrictive assumptions regarding how

firms allocate inputs to produce different products. This is especially important in the presence

of shared inputs that serve as public goods within firms. Fourth, our method is designed to

deal with the challenge of unobserved material prices. This is particularly useful when material

prices are heterogeneous across firms and over time but are unobservable to researchers. Fifth,

our estimation of demand functions leverages the within-firm revenue relationship implied by

profit maximization to estimate demand elasticities with commonly available firm-level IVs. This

alleviates the need for firm-product level IVs in the demand estimation that are rarely available.

This section is organized as follows. In Section 3.1, we first describe how the static profit

maximization conditions lead to one-to-one mapping between the observed data and variables

that are unobservable to researchers. In Section 3.2, we derive the estimating equations using the

mapping established in Section 3.1 and describe our estimation strategy in detail.

3.1 From Observables to Unobservables: a One-to-one Mapping

We start the description of the estimation strategy by clarifying the observable and unobserved

variables in the estimation procedure. We observe capital stock Kjt, labor input Ljt, labor

expenditure ELjt, material expenditure EMjt, and quantity Qjtn and price Pjtn of each product

n ∈ Λjt. We do not observe PMjt (or Mjt), and ξ̃jtn and ω̃jtn for n ∈ Λjt. Our goal is to estimate
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these unobserved variables together with the production and demand function parameters. Next,

we describe the mapping between observed data and unobservables on the basis of the firm’s profit

maximization.

Note that the firm observes the state sjt (in particular, ω̃jtn and ξ̃jtn for all n ∈ Λjt and PMjt) as

described in Section 2.3 and optimally chooses quantities of inputs and outputs subject to the

demand and production functions. The Lagrange function implied by the static profit maximization

problem (6) is:

Ljt =
∑
n∈Λjt

(Qjtn)
1− 1

ηn e
ξ̃jtn
ηn − PLjtLjt − PMjtMjt

−λjt

{ ∑
n∈Λjt

e−ω̃jtnQjtn

− F (Ljt,Mjt,Kjt)

}
. (7)

The first-order conditions with respect to labor and material inputs are, respectively:

∂Ljt

∂Ljt
= −PLjt + λjt

∂F (Ljt,Mjt,Kjt)

∂Ljt
= 0, (8)

∂Ljt

∂Mjt
= −PMjt + λjt

∂F (Ljt,Mjt,Kjt)

∂Mjt
= 0. (9)

The first-order condition with respect to each product quantity Qjtn, n ∈ Λjt, is:

∂L
∂Qjtn

=
ηn − 1

ηn
Pjtn − λjte

−ω̃jtn = 0, (10)

where we have used Pjtn = (Qjtn)
− 1

ηn e
ξ̃jtn
ηn according to the demand function (2). The implication

of (10), Pjtn = ηn
ηn−1λjte

−ω̃jtn , is intuitive: the price is the product of the markup ( ηn
ηn−1) and the

marginal cost (λjte
−ω̃jtn).13 Within a firm, the marginal cost of a given product differs only due

to productivity ω̃jtn, although the marginal cost also varies across firms due to λjt. This is a

direct result of the costless input transferability assumption of the production transformation

function and profit maximization. Therefore, conditional on a firm, the variation in product prices

identifies the productivity difference across products within the firm (after accounting for the

markup).

13 It should be noted that because the demand elasticities vary by product and firms produce different sets of
products, markups also vary by firm-year pairs. We report the estimated variation of markups at the firm-year in
Section 5.
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From the perspective of researchers, we do not observe ξ̃jtn, ω̃jtn and PMjt. Nonetheless, we

observe the optimal choices which are made based on them by the firm. Thus, utilizing the

optimization conditions allows us to recover the unobserved state variables as functions of the

observable variables. Specifically, our strategy is to recover ξ̃jtn, ω̃jtn and PMjt as functions of

parameters and observable variables including capital stock Kjt, labor input Ljt, labor expenditure

ELjt, material expenditure EMjt, quantity Qjtn and price Pjtn of each product n ∈ Λjt.

First, we write ξ̃jtn as a function of observed price and quantity according to the demand function

(2):

ξ̃jtn = lnQjtn + ηn lnPjtn. (11)

Once ηn is estimated, we can recover ξ̃jtn as above.

Second, we write PMjt as a function of observable variables. Taking the ratio of equations (8) and

(9) and utilizing the expenditure identities (i.e., ELjt = LjtPLjt and EMjt =MjtPMjt), we have:

Mjt =

[
αLEMjt

αMELjt

] 1
γ

Ljt. (12)

This implies that material quantity can be recovered from observable variables up to unknown

parameters (αL, αM , γ). Thus, PMjt is naturally derived by substituting (12) in the expenditure

identity (i.e., EMjt =MjtPMjt):

PMjt =

[
αM

αL

] 1
γ
[
EMjt

ELjt

]1− 1
γ

PLjt. (13)

In the same spirit of Grieco et al. (2016), the identification of PMjt comes from the variation of

labor and material expenditure ratio (conditional on wage rate), which is implied by the optimality

condition under non-Hicks neutrality of the material price in the transformation function.

The third step is to recover ω̃jtn for n ∈ Λjt. Specifically, by substituting (12) into (8), we can

solve for λjt as:

λjt =
ELjt

ραLL
γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρ
γ

. (14)

Then, we substitute (14) into (10) to get:

eω̃jtn =
ηn

(ηn − 1)Pjtn

ELjt

ραLL
γ
jt

[
αLL

γ
jt

(
1 +

EMjt

ELjt

)
+ αKK

γ
jt

]1− ρ
γ

︸ ︷︷ ︸
λjt

. (15)
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Noticeably, there are two major components in (15) that identify firm-product-period specific

productivity, ω̃jtn. The first is a firm-level component, λjt as in (14). This component is the

analog of single-product-firm productivity modelled by Grieco et al. (2016) (see their equation

(7)). This (unobserved) productivity component is identified from the (unobserved) material price

because productivity is Hicks-neutral while the material price is not in our framework.14 That

is, a change in the material price causes a change in the (observable) labor-material expenditure

ratio, but a productivity change does not. The second major component, which varies by firm

and by product, consists of Pjtn and ηn. Intuitively, the variation in product prices helps identify

the differences in productivity across products within the same firm, conditional on the elasticity

of demand. That is, firms with higher (quantity-based) productivity pass the cost-saving to the

product prices (as in Foster et al., 2008). Consequently, the product with a lower price has higher

productivity compared with another product manufactured by the same firm, after controlling

for the markup (implied by the elasticity of demand). In sum, our identification of ω̃jtn uses the

variations both at the firm level and at the firm-product level.

Remark: The proxy-based methodology, originated from Olley and Pakes (1996) along with

a long list of methodological papers, uses observable variables (such as capital investment and

material input) to control for productivity when estimating production functions. Extending

the proxy-based approach to the multiple-product context requires valid proxies, which have to

admit a one-to-one mapping between the proxies and firm-product level productivity. This is a

challenging assumption in the context of a large number of products due to the high dimension of

the problem. More importantly, the number of proxies has to increase with the number of products

(as recogenized by Dhyne et al., 2022), making the extension even more challenging without

additional assumptions. The recent development in methods (i.e., Chen and Liao, 2022; Orr, 2022;

Valmari, 2022) circumvents this challenge by using production functions of individual products

as proxy functions directly, after imputing intra-firm input allocation from firm optimization

conditions. This approach assumes that there is no transitory error in production (which is

explicitly modelled and dealt with by Olley and Pakes, 1996) and that the persistent error (as in

the traditional notion of productivity) evolves independently according to a Markov process.

In contrast, our methodology uses first-order conditions to construct an explicit one-to-one

mapping for productivity (up to the parameters to be estimated). This does not only guarantee

the existence and uniqueness of the mapping from observable data to unobservable heterogeneity,

14If both productivity and the material price are Hicks-neutral in the production function, as in Cobb-Douglas
production functions, then this identification strategy fails. However, in this case, the labor-material expenditure
ratio would be a constant under the optimality condition, which is not supported by the data.
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but also lends us a significant advantage in dealing with scenarios where firms produce a large

number of products, because the number of first-order conditions naturally increases with the

number of products. In addition, this methodology of recovering unobservable heterogeneity

(instead of imputing input allocation) saves us from estimating productivity evolution processes

as a part of the production estimation, which can dramatically complicate the existing methods

in the literature, especially when there are endogenous, frequent entry and exit of products or

the evolution processes of productivity are interdependent. More broadly, this feature allows our

method to be widely applied to analyzing the impact of policy shocks on productivity, which

would have to be otherwise considered as a part of the evolution processes (as emphasized by

Chen et al., 2021) and further complicate the estimation process using the existing methods.

3.2 Estimating Equations and Strategy

In the previous subsection, we have explicitly constructed a one-to-one mapping from observable

variables to the unobserved ξ̃jtn, ω̃jtn, and PMjt (or Mjt equivalently) up to a set of parameters

to be estimated. This mapping is the key to developing the estimating equations, which we derive

in this subsection. Next, we describe in detail the strategy to estimate the key parameters of the

model.

In contrast to the existing methods (i.e., Orr, 2022; Valmari, 2022) that abstract away from

unexpected shocks of production, we relax this assumption by following the spirit of Olley and

Pakes (1996) to allow for a transitory shock ujt (in addition to productivity) to the transformation

function (3) in the estimation:

∑
n∈Λjt

e−ω̃jtnQjtn =
[
αLL

γ
jt + αMM

γ
jt + αKK

γ
jt

] ρ
γ
eujt . (16)

Specifically, ujt is a non-structural firm-year level unexpected shock (or measurement error), which

has a mean of zero: E(ujt) = 0. The distinction between ujt and productivity (ω̃jt) is that the

firm observes productivity when making decisions and thus productivity is correlated with input

choices, while ujt is not observed by the firm and thus is uncorrelated with input choices.

Remark: Essentially, ujt is an unforecastable shock (beyond productivity) that influences the

quantity of output at the firm level. Orr (2022) and Valmari (2022) assume away such a shock

(i.e., productivity is the only unobserved variable in their production models after input allocation

is recovered) in order to directly use the production function itself as a control function for

productivity in the productivity evolution process. This assumption is the key to their scalability
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to handle a high dimension of productivity at the firm-product level. In contrast, our approach

does not treat the production (transformation) function as a control function and thus we can

allow for such an unforecastable shock.15

Because ujt is unobserved by the firm, it does not affect the production decisions (i.e., the

first-order conditions) derived above. Substitute (12) and (15) into (16), and after some algebra,

we obtain the following estimating equation:

ln

 ∑
n∈Λjt

(ηn − 1)ρ

ηn
Rjtn

 = ln

[
EMjt + ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]
+ ujt, (17)

where Rjtn is the revenue of product n of firm j at period t, and ujt is the firm-year level unexpected

shock in (16). In fact, this equation is the multi-product equivalent of the estimating equation

proposed by Grieco et al. (2016) (see their equation 8), who assume that each firm produces

a single product.16 In the context of multi-product firms, the individual product revenues are

adjusted by their corresponding markups (reciprocal).17 Although ujt does not affect production

decisions, it does appear as a part of observed product revenues. A higher shock implies a higher

realized revenue Rjtn. Thus, ujt and Rjtn are correlated. This also implies that we need to

estimate the model via the generalized method of moments (GMM).18

Nonetheless, estimating all the parameters using (17) alone faces two challenges. First, ρ is not

separately identified from demand elasticties in (17). In fact, only a combination of ηn and ρ (i.e.,

(ηn−1)ρ
ηn

) is identified by (17). Second, (17) requires (at least) the same number of instrumental

variables as the number of products to identify (ηn−1)ρ
ηn

of each product, because all product

revenues are correlated with ujt.

To address the two challenges at the same time, we explore the relationship between the revenues

of any two products implied by the firm’s static maximization problem, taking into account that

the markets for different products are segmented. Notably, ηn influences the sales of individual

15After estimating our model, we find that the dispersion of such shock ujt, as reflected as (19), is significant.
For example, the inter-quartile range of ujt in the pharmaceutical industry is 0.44, implying that it should not be
ignored or treated as a part of productivity.

16More broadly, (17), without logarithms, is also similar to the estimating equations used by Das et al. (2007),
Aw et al. (2011), and Li (2018) with data on the firm’s total variable cost to estimate demand elasticities in multiple
markets.

17If the elasticities (markups) are the same, then the estimating equation is the same as in Grieco et al. (2016).
We also allow for the returns to scale parameter, ρ, to be estimated, while Grieco et al. (2016) assume it to be one.

18If one is willing to assume that ujt is uncorrelated with the revenues or the demand elasticities are estimated
(e.g., by estimating the demand functions directly) before the production estimation, it is possible to estimate (17)
using a Nonlinear Least Squares (NLLS) estimator. The key results from the NLLS estimation are quantitatively
and qualitatively similar to our main results.
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products, while ρ represents the returns to scale of the production transformation function and

affects the overall sales of all products. Thus, the firm’s optimal decision on trading off the sales

of different products within the firm helps identify ηn from ρ. In other words, the variation in

the sales of a product relative to another product contains information on how the elasticities of

the two products differ. This addresses the first challenge. Meanwhile, the identified relationship

between elasticities reduces the number of parameters to be estimated in (17). Consequently, the

number of instrumental variables required to estimate the rest of the parameters does not increase

with the number of products. This addresses the second challenge.

To implement this idea, we define a reference product. In principle, the reference product can

be any product. From an empirical point of view, we use the product that is manufactured by

most firms in the industry, in order to maximize the number of observations one could use in the

estimation. Without loss of generality, we denote the reference product as product 1. For any

firm j, taking the ratio of (10) of the reference product and that of another product n and using

Rjtn = PjtnQjtn, we obtain:

ln(Rjt1) = cn +
η1 − 1

ηn − 1
ln(Rjtn) + µjtn, n = 2, . . . , N, (18)

where

cn = (1− η1) ln

[
η1

η1 − 1

ηn − 1

ηn

]
and

µjtn = (η1 − 1)

(ω̃jt1 +
1

η1 − 1
ξ̃jt1)− (ω̃jtn +

1

ηn − 1
ξ̃jtn)︸ ︷︷ ︸

difference in quality-adjusted productivity

+
η1 − ηn

(η1 − 1)(ηn − 1)
ujt︸ ︷︷ ︸

measurement error component

 .

The latter, µjtn, contains the difference of the capability (or quality-adjusted productivity, ω̃+ 1
η−1 ξ̃,

as will be formally defined in Section 5) of producing a product relative to that of the reference

product and composition of the unexpected shock. This equation predicts that the (logarithmic)

revenues of two products are linearly related conditional on the difference of production capability.

In particular, firm-level inputs are not a part of the equation explicitly. This equation is similar

to the estimating equation developed by Grieco et al. (2022), who explore the relationship of

revenues of two markets (domestic sales and exports).19

19One crucial difference is that Grieco et al. (2022) model the error term as an unexpected shock because the
productivity and quality of the domestic and export products are assumed to be the same and thus they cancel
each other out.
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Intuitively, because the demand for each product is segmented in our setting, as discussed in

Sections 2.1 and 4, the relative revenue of one product over another product in the same firm

depends on their own demand elasticities (conditional on their relative levels of productivity and

quality, measured as µjtn) rather than on complementarity or substitution between them. As

a result, the variation of one revenue relative to another in (18) provides the identification of

the ratio, η1−1
ηn−1 for n = 2, 3, . . . , N . In contrast, the variation of revenue levels in (17) identifies

(ηn−1)ρ
ηn

, n = 1, 2, . . . , N . That is, the returns to scale parameter affects the sales of all products

but not the relative relationship of sales between different products, while demand elasticities

affect both the level and the relative relationship of sales of different products. As a result, ρ

and ηn, n = 1, 2, . . . , N , are separately identified as long as there are at least two products with

different demand elasticities in the industry. The model is over-identified when there are more than

two products produced by the firms in the industry. More precisely, the elasticities and returns to

scale parameter can be identified as long as there is a firm that manufactures two products with

different demand elasticities for a number of periods, which is a very mild assumption.

To estimate (18), we treat µjtn as an error term. We allow the mean of µjtn to vary by product

and year and use a set of flexible product-year dummies as controls (which also absorb cn). Still,

µjtn is likely correlated with Rjtn – the revenue of product n is lower if the capability of producing

n is lower than that of the reference product. We use a set of IVs to address the endogeneity issue.

In our implementation, the IV set consists of a constant and the logarithm of the wage rate (PLjt),

the capital stock (Kjt), and the ratio of material expenditure to labor (EMjt/Ljt, as a proxy for

material prices).20 Grieco et al. (2022) uses a similar set of firm-level IVs to estimate an equation

analogous to (18) in a two-product scenario. The same insight carries over in our context. These

firm-level variables influence the level of revenue (i.e., Rjtn), but they are uncorrelated with the

difference of capability (i.e., µjtn) between two products. For example, conditional on everything

else, a higher level of capital stock potentially leads to higher revenues of a given product, but it

is not necessarily associated with the production capability of one product being larger than that

of another product within the same firm. Thus, we use these firm-level variables as IVs for all

product pairs in (18).21

20To see this, note that (13) is equivalent to PMjt =
[
αM
αL

] 1
γ
[
EMjt

Ljt

]1− 1
γ
P

1
γ

Ljt. Taking logarithm, we obtain

ln(PMjt) =
1
γ
ln

[
αM
αL

]
+(1− 1

γ
) ln

[
EMjt

Ljt

]
+ 1

γ
ln(PLjt). Because we include the logarithm of the wage rate, ln(PLjt),

in the IV set, using ln
[
EMjt

Ljt

]
is equivalent to using ln(PMjt) in this setting, although PMjt is not observable. Our

result is quantitatively similar if the expenditure ratio of material and labor is used as an IV.
21The model is over-identified if there is more than one IV. For example, if there are 2 IVs, then there are 2(N −1)

moment equations that can be formed to identify (N − 1) coefficients (i.e., η1−1
ηn−1

, n = 2, . . . , N).
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These firm-level IVs are valid under the condition that the production of a product is not

systematically more intensive in the use of a specific input (e.g., capital) than other products,

because otherwise that input (as an IV) will be endogenously affected by the capability of producing

that product relative to other products. In our structural framework, given the transformation

function and costless transferability of inputs across products, this condition is always satisfied.22

We use Monte Carlo exercises to demonstrate the performance of our approach and IVs. As shown

in the first panel of Table A7 in Appendix B, the approach estimates the true value of η1−1
ηn−1 very

well.

Remark: It is worth noting three features of our strategy to estimate the relationship of the

elasticities of demand between products. First, although the demand elasticities can be, in

principle, identified by the variation of prices and quantities in (2), our strategy does not use

such variation. In fact, our strategy has an advantage over the traditional ways of using such

variation in estimating ηn via the demand function (2) directly. In general, one needs IVs (such

as firm-product-time varying cost shifters) that are uncorrelated with product quality to estimate

(2) directly. But commonly used cost shifters can hardly serve this purpose if firms producing

high-quality products use high-quality inputs that come with higher costs. Nonetheless, if one has

appropriate IVs to estimate the demand function (2) directly, then it is not necessary to estimate

(18), and, consequently, our main equation (17) can be simply estimated using a Nonlinear Least

Square estimator directly (instead of using GMM). For example, Orr (2022) designs sophisticated

IVs that leverage the variation of product sets and material input price growth experienced by

firms in other output markets that use similar inputs. However, his strategy does not apply

to broader data settings with little variation of product sets or unobserved input prices and

inputs (like in our context). Fortunately, simple cost shifters such as firm-level capital stock are

appropriate IVs to estimate (18) for all product pairs, which explores the relative difference (as

opposed to the level) of revenue across products.

Second, our strategy is also different from the practice of estimating the first-order differences of

demand function (2), which implicitly assume that the unobserved quality is constant from one

period to another (i.e., Valmari, 2022). In contrast to this assumption, our strategy explores the

advantage offered by the intra-firm decisions in multi-product firms to estimate the time-varying

22To examine this condition empirically, we check whether the IVs are correlated with either the within-firm
product shares or the ratio of log sales of a product over that of the baseline product as alternative measures of
relative production capability. Specifically, we regress each IV on either the interactions between product fixed
effects and within-firm revenue shares (including firm and year fixed effects) or the interactions between product
fixed effects and the ratio of log sales of a given product over that of the baseline product (including firm and year
fixed effects). We find that at least 85% of coefficients (i.e., products) are not significant at the 1% level in these
tests for our IVs.
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unobserved quality at the firm-product level.

Finally, if one is willing to assume constant return to scale (i.e., ρ = 1), then the demand elasticities

can be identified using (17) alone, without relying on the strategy involving (18). In fact, with

the constant return to scale assumption, (17) degenerates to the estimating equations used by

Das et al. (2007), Aw et al. (2011), and Li (2018). These papers utilize the relationship between

the total variable cost (as our counterpart of the right-hand side of (17)) and export revenues (as

our counterpart of the left-hand side of (17)) of the same firm to estimate demand elasticities in

multiple export markets.

We denote the estimated relationship between elasticities as b̂n = η1−1
ηn−1 , n = 2, . . . , N , and,

naturally, b̂1 = 1 by definition. Thus, ηn = 1
b̂n
(η1 − 1) + 1. Substitute it as ηn in (17) and solve

for ujt to construct moment conditions for the GMM estimation:

ujt = ln ρ+ ln

 ∑
n∈Λjt

η1 − 1

η1 − 1 + b̂n
Rjtn

− ln

[
EMjt + ELjt

(
1 +

αK

αL

(
Kjt

Ljt

)γ)]
. (19)

Importantly, there are only four parameters, β ≡ (ρ, η1,
αK
αL
, γ), to be estimated. This means that

the number of instrumental variables required does not increase with the number of products. In

particular, firm-level input choices can serve as valid IVs because they are not correlated with the

unexpected shock ujt. In the implementation, we use Zjt = (1, EMjt, ELjt, Ljt,Kjt/Ljt) as IVs.

Our results are robust to a set of alternative firm-level IVs.

Of course, (19) can only identify αK
αL

(rather than αL, αM , and αK separately). As shown by

Grieco et al. (2016), the full set of (αL, αM , αK) can be identified with two constraints naturally

implied by the model. The first constraint is a normalization of distribution parameters in the CES

production function: αL + αM + αK = 1. The second constraint equalizes the ratio of geometric

means of labor expenditure (EL) and material expenditure (EM ) to the ratio of distribution

parameters in the CES production function. That is, αM
αL

= EM

EL
. This constraint results from

taking the geometric mean of (12), which is implied by the first-order conditions of labor and

material quantities, (8) and (9), of all firms.23

23As shown by Grieco et al. (2016), this constraint holds conditional on a normalization of the CES production
function. Thus, we follow the same procedure to normalize the inputs using their corresponding industry-level
geometric means as in the literature (e.g., Klump and de La Grandville, 2000; León-Ledesma et al., 2010). Nonetheless,
to ease our notation, we directly denote the normalized input variables as (Ljt,Mjt,Kjt). As a result, the ratio of

the geometric means of material and labor is M

L
= 1, which implies αM

αL
= EM

EL
, by taking the geometric mean of

(12) across firms.

25



As a result, β can be estimated as:

β̂ = argminβ

 1

N
∑
j,t

ujtZjt

′

W

 1

N
∑
j,t

ujtZjt

 , (20)

subject to: αL + αM + αK = 1 and
αM

αL
=
EM

EL

,

where W is a weight matrix and N is the number of firm-time observations.

As a summary of the full estimating approach, the first step is to estimate b̂n = η1−1
ηn−1 , n = 2, . . . , N

via Two-Stage Least Squares (2SLS) using the relationship imposed by the within-firm relative

sales in (18). The second step is to estimate (ρ̂, η̂1, α̂L, α̂M , α̂K , γ̂) using (19) via GMM (together

with the constraints regarding the parameters). With these estimates, the demand elasticities can

be recovered as η̂n = 1
b̂n
(η̂1 − 1) + 1. After that, we compute ξ̃jtn, ω̃jtn, and PMjt via (11), (15),

and (13), respectively. We demonstrate that our method is able to recover the true parameter

values in the Monte Carlo exercises shown in Table A7 of Appendix B.

4 Data

We estimate our model using firm-level Mexican manufacturing data, collected by the Instituto

Nacional de Estad́ıstica y Geograf́ıa (National Institute of Statistics and Geography, INEGI

henceforth) and covering the period 1994-2007. We use two datasets: the Encuesta Industrial Anual

(Annual Industrial Survey, EIA henceforth), the main annual survey covering the manufacturing

sector, and the Encuesta Industrial Mensual (Monthly Industrial Survey, EIM henceforth), a

monthly survey that monitors short-term trends related to employment and output.24 These

datasets are particularly useful for our analysis because they provide quantity and sales information

at the firm-product level.

Next, we describe in more detail these two surveys and the variables we extract from them.25

The EIA contains information on 6867 firms in 1994, but this number decreases over time due to

attrition. It covers roughly 85 percent of all manufacturing output value based on information

from the industrial census, but it excludes assembly plants, i.e., “maquiladoras”. The EIA includes

variables related to output indicators, inputs, and investment. These data make it possible to

calculate the value of intermediate inputs and physical capital stock based on information on

investment and the perpetual inventory method. The EIM runs in parallel with the EIA and covers

24The unit of observation in both surveys is a plant rather than a firm and the sample includes all plants with
more than 100 employees as well as a sample of smaller plants. For simplicity and in line with the literature, we will
use the term “firm” to refer to a plant.

25More information on the EIA and EIM can be found in Caselli et al. (2017) and Caselli (2018).
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the same firms. The EIM contains information on the number of workers and their wage bills so

that the average wage at the firm level can be calculated. The EIM also contains output-related

variables, in particular values and quantities of sales at the product level, so that an implicit

average unit price can be calculated.26

Firms are classified into one of the classes of activity based on their principal product. A class

of activity is the most disaggregated level of industrial classification and is defined at six digits

according to the 1994 Clasificación Mexicana de Actividades y Productos (Mexican System of

Classification for Activities and Products, CMAP henceforth). Firms report information product

by product based on their industries.

In this paper, we focus on three specific classes of activities: manufacturing of footwear, mainly of

leather (class 324001, footwear in short); printing and binding (class 342003, printing in short);

and manufacturing of pharmaceutical products (class 352100, pharmaceuticals in short). These

three industries were chosen because each industry is made up of more than 500 firm-year pairs, a

number of observations large enough for our estimation strategy. More importantly, multi-product

firms are particularly prevalent in these industries – 65% of firms in these three industries are

multi-product producers and such firms account for 86% of total revenues and produce on average

6.7 products per year.27 They also represent a diverse set of manufacturing industries with clear

concepts/characteristics of product quality: for example, advanced design and assembly that

provide superior comfort and durability in the footwear industry; acid-free paper and durable

binding in the printing industry; potent active ingredients and degrading-preventing packaging in

the pharmaceutical industry.

For the purpose of the production function estimation in Section 5, all products with fewer

than 100 observations are aggregated together in a residual product category.28 The prices and

quantities of the aggregated residual product category are estimated following Diewert et al.

(2009) and Caselli (2018). While this aggregation is required to estimate the demand elasticity of

substitution for each product based on a large enough number of observations, it only implies

that the demand elasticity of substitution is by assumption equal across all products included

in the residual product category within an industry. In addition, this aggregation involves a

26All nominal variables are deflated using the consumer price index. To facilitate comparison, we normalize
average industry output prices to 1. Initial capital stock and investment are deflated using industry-level price
indices.

27Tables A1, A2 and A3 in the Appendix show how detailed the product-level information is by reporting the list
of products with at least 100 observations for each of the three chosen industries.

28The residual product category is defined as “Others” (product code 99) in Tables A1, A2 and A3 in the
Appendix.
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relatively small share of products: the main (i.e., not aggregated) products account for between

74% and 92% of observations and 82% and 90% of revenue across the three industries. Accordingly,

the descriptive statistics and patterns demonstrated in this section are reported based on the

aggregated categories, which is the data used in the estimation in Section 5.

There are a few patterns worth noticing. First, multi-product production is an essential feature of

the firms in our sample. We demonstrate this point by using an index that is analogous to the

traditional Herfindahl–Hirschman Index (HHI). Specifically, we construct an analog index of HHI

as the sum of the squared shares of sales within a firm. A higher HHI index means a higher level

of concentration of sales within a firm. In Figure 1, we aggregate the firm-level index with weights

equal to the firms’ total revenues, by firm-year pairs’ product scope. The index is naturally equal

to one for single-product producers. For firms with a larger product scope, HHI decreases sharply

becoming close to 0.3 for firm-year pairs producing 5 products and close to 0.2 for firm-year pairs

producing 10 or more products.29 These values imply that producers are genuine multi-product

firms – they do not concentrate production entirely on their top products, and all products, albeit

to different degrees, are important for firms’ total revenues.30 Thus, multi-product firms need to

be treated and modelled as such and they cannot be simplified as single-product producers.

The importance of multiple-product production is also present in all the industries of our analysis,

albeit with some degrees of variation, as shown in Table 1. The percentage of multi-product

firms ranges from 21% in the footwear industry to 55% in printing and 85% in pharmaceuticals

and they account for an even larger share of revenues (from 39% in the footwear industry to

94% in pharmaceuticals). The average product scope is larger in printing and pharmaceuticals

(respectively, 5.9 and 7.9 for multi-product firms) than in the footwear industry (2.4). These

differences in average product scope are in line with the number of product categories available in

each industry, which ranges from 4 in footwear to 16 in pharmaceuticals.

Second, the status of being a multi-product firm is quite persistent, and so is the product scope.

In particular, using a simple autoregressive process of the number of products produced by each

firm, we measure the persistence coefficients are 0.87, 0.95, and 0.98 in the three industries,

respectively.31 Thus, multi-product firms unequivocally dominate manufacturing production in

29These values indeed show some degree of concentration of sales within firms. For example, if a firm produces 5
products with equal sales, the index would be 0.2. The fact that the index is close to 0.3 implies that there exists an
uneven distribution of sales. We explore this heterogeneity using quality and productivity within firms in Section 6.

30To confirm that firms rely heavily on all products for their total sales, Appendix Table A4 shows the average
within-firm product shares by product scope. For instance, for firms producing 5 or more products, the share of
products other than the top product is 0.557 and the share of products with rank 5 and beyond is 0.146, on average.

31The entry of new products and the exit of old products only account for 3.8 and 4.4 percent of the observations,
respectively.
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Figure 1: Weighted average within-firm HHI, by number of products
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Notes: All firm-year pairs producing 10 products or more are clustered in the “10+” group.

The weighted average is calculated using revenues as weights.

our data and their within-firm adjustment across products is more salient than the extensive

margin adjustment in changing the number of products.

These patterns imply that both within-firm and across-firm heterogeneity is important. On the one

hand, there exist persistent characteristics at the firm level that determine the performance across

firms. On the other hand, intra-firm heterogeneity and product scope play a significant role in

shaping these characteristics within firms. These implications are in line with the specification for

productivity (15), which contains a common component at the firm level to capture the differences

across firms as well as an individual component varying at the firm-product level to explain the

variation of performance within a firm.

Finally, the sample reflects patterns consistent with the model’s demand assumption. On average,

about 19 to 43 firms are competing in the market for any given product in any given year. The

majority of the firms do not command a dominant share of the market – the median (traditionally

defined) HHI at the product-year level ranges between 0.11 in the pharmaceutical industry and

0.26 in the printing industry. More importantly, given the level of product disaggregation, the

markets for different products (e.g., women’s shoes vs. men’s shoes in the footwear industry)

are reasonably assumed as segmented. Of course, for each product, firms’ outputs are vertically
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differentiated as evidenced by the large dispersion in prices. For example, the interquartile range of

prices in logarithm is 1.4 (i.e., a 400% difference) within a product category, on average, across the

three industries. Overall, these patterns support abstracting from demand cannibalization across

products manufactured by the same firm and assuming that firms face monopolistic competition

within each product category.

Table 1: Descriptive statistics

Variable Footwear Printing Pharmaceutical

Revenue per product (R) 64.846 29.142 100.167
(101.261) (73.091) (207.205)

Number of workers (L) 236.180 157.704 450.222
(361.356) (153.598) (482.926)

Labor expenditure (EL) 13.785 17.435 88.792
(28.726) (22.124) (110.791)

Material expenditure (EM ) 50.446 65.568 263.033
(77.265) (90.175) (382.666)

Capital stock (K) 3.603 21.491 22.534
(8.444) (47.314) (31.437)

Product scope, all firms 1.289 3.708 6.858
(0.627) (3.752) (3.740)

Product scope, MPFs only 2.388 5.891 7.925
(0.602) (3.841) (3.024)

Share of MPFs 0.208 0.554 0.846
Revenue share of MPFs 0.389 0.599 0.940

Number of products 4 14 16
Number of firms 72 83 82
Average number of firms per product-year 21 19 43
Number of firm-year pairs 707 831 928

Notes: The table reports the means and standard deviations (in parenthesis) for each variable by industry.

R is revenues by product (1 million 2007 Mexican Peso, 1M MXN); L is the number of workers by firm, K

is the capital stock by firm (1000 physical units); EL is the expenditure on labor (wage bill) by firm (1M

MXN); EM is the expenditure on intermediates by firm (1M MXN); Product scope is the number of products

manufactured by firm.

5 Estimation Results

In this section, we apply the empirical model to the data and estimate the production and demand

function parameters by industry, which then allows us to compute firm-product level productivity

and quality. Notably, our approach employs a novel method, and despite this novelty, the resulting

structural parameter estimates align closely with existing literature. Moreover, the productivity

and quality measures derived from these estimates exhibit economically meaningful properties.

Because our empirical analysis relies on estimated variables, and to account for this, we employ

bootstrapping with 250 samples to compute all standard errors presented in the subsequent tables,
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ensuring robustness and accuracy in our findings.

Table 2 presents the production function parameters. αM is significantly larger than αL and

αK , consistent with the intensive use of intermediate material input across all industries. αK in

the pharmaceutical industry is the highest among the three industries, reflecting the importance

of capital in this industry. Parameter σ, which is the elasticity of substitution across inputs,

i.e., labor, material, and capital, is greater than one across all industries. This is different from

those in the classical literature which does not control for heterogeneous material prices. But

it is largely consistent with the estimates in Grieco et al. (2016, 2022), Harrigan et al. (2021),

and Li and Zhang (2022) based on a similar method but using different datasets from Colombia

(ranging from 1.4 to 2.6), France (ranging from 1.1 to 2.0), and China (ranging from 1.2 to 2.7),

respectively. It is also close to the average estimate (around 1.4) of the elasticity of substitution

among Chinese industries by Berkowitz et al. (2017) using a different method. Finally, the returns

to scale parameter ρ of the three industries is larger than one, but it is not significantly different

from one, implying that the production is close to constant returns to scale in these industries,

except in the case of the footwear industry.

Table 2: Production Function Estimates

Parameter Footwear Printing Pharmaceutical

αL 0.202 0.229 0.227
(0.014) (0.015) (0.022)

αM 0.774 0.673 0.595
(0.043) (0.030) (0.066)

αK 0.023 0.099 0.178
(0.054) (0.038) (0.084)

σ 1.518 1.244 1.168
(0.587) (0.151) (0.250)

ρ 1.227 1.078 1.002
(0.102) (0.115) (0.118)

Note: Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in paren-
theses (250 repetitions).

Table 3 presents the estimates of the demand elasticities of substitution of different products in

the three industries. These estimates generally fall within a similar range as those found in the

existing literature (e.g., see Roberts et al., 2018; Grieco et al., 2016; Dubois and Lasio, 2018, for

the Chinese footwear industry, the Colombian printing industry, and the French pharmaceutical

industry, respectively). Notably, our estimation exploits the relationship between product revenues

within the same firm, as described in (18). This approach is in contrast to the literature, which
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often relies on direct estimation of the demand function while assuming time-invariant product

quality and/or using firm-level instrumental variables, such as capital stock. By leveraging the

multi-product context, this approach capitalizes on the advantage of utilizing firm-level IVs that

may be potentially correlated with the level of quality but are less likely to be correlated with the

difference in production capabilities of any two products within the same firm.32

Table 3: Demand Function Estimates

Parameter Footwear Printing Pharmaceutical

η1 2.823 4.523 3.688
(0.480) (1.738) (1.187)

η2 2.455 8.661 3.037
(0.570) (2.664) (1.470)

η3 3.588 4.432 4.209
(0.690) (1.494) (1.869)

η4 3.250 7.321 3.999
(0.695) (2.251) (2.037)

η5 4.448 4.010
(1.510) (1.982)

η6 4.769 2.712
(2.124) (0.812)

η7 5.140 3.544
(1.640) (1.426)

η8 6.157 3.210
(2.306) (1.168)

η9 7.139 3.133
(2.214) (1.520)

η10 4.838 3.263
(1.528) (1.281)

η11 6.682 3.418
(1.859) (1.620)

η12 5.588 3.047
(1.761) (1.054)

η13 4.279 4.713
(2.203) (2.014)

η14 5.379 7.279
(1.480) (2.360)

η15 2.431
(1.973)

η16 2.809
(1.673)

Note: Bootstrapped standard errors clustered at the firm
level and stratified by industry and scope are shown in paren-
theses (250 repetitions).

32As expected, when we estimate the demand function (2) directly using the same firm-level IVs, the estimated
demand elasticities are significantly biased towards zero: the mean elasticities are -0.005, 1.941, and -0.395 for the
footwear, printing, and pharmaceutical industries, respectively.
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The variations in demand elasticities across products, as documented above, lead to differences

in markups at the firm-year level. These markups can be calculated as the weighted average of

product markups considering their respective shares within firms. Across the three industries, the

average markup at the firm-year level is 1.40 with a standard deviation of 0.14. The interquartile

range (using the logarithm of the markups) is 0.16. This dispersion in markups is smaller than

the estimate reported by De Loecker and Warzynski (2012), who found a standard deviation

of 0.5 across a broader range of industries. Presumably, this difference is due to the fact that

our variation of firm-year-level markups only captures the heterogeneous revenue shares and sets

of products (as well as their associated markups) manufactured by different firms. Despite this

narrower focus, the dispersion of markups at the firm-year level remains significant.

After all model parameters are estimated, we compute the firm-product-time varying output

quality and productivity according to (11) and (15) in logarithm, respectively.33 Nonetheless,

these two measures are not directly comparable across and within firms. This is because the

varieties (in the same product category) are of different quality levels and the unit of measurement

across different products can be also different (e.g., grams vs. liters). However, the quality-adjusted

output is readily comparable across firms and products, as shown by Melitz (2000), Orr (2022),

and Li et al. (2023). Thus, we follow the literature to construct a combined measure that takes

both quality and productivity into account. In our context, given the setup of quality-adjusted

output in (1), we define a quality-adjusted productivity (ATFP) measure as34

ATFPnjt = ω̃njt +
1

ηn − 1
ξ̃njt. (21)

As expected, ATFP reflects significant dispersion across firms even within a specific product

category.35 The mean interquartile range within a product is about 2.8 (calculated across all

products in the three industries), which is similar in magnitude to that of revenue productivity

documented by Grieco et al. (2022) in the Chinese paint industry. Regarding the components of

quality-adjusted productivity, the interquartile range of ω̃jtn within a product has a mean of 2.8,

while the interquartile range of 1
ηn−1 ξ̃njt within a product has a mean of 1.8.36 This suggests that

33We also compute firm-level intermediate input prices according to (13). We find that there is significant
heterogeneity in intermediate prices, as documented by Ornaghi (2006) using observed intermediate price data.

34This measure is similar to the conventionally defined revenue-based productivity (a.k.a., TFPR).
35The distributions of ATFP by product, as well as the distributions of its components, ω̃njt and ξ̃njt, are reported

in Figures A1, A2 and A3, respectively.
36The interquartile range of ω̃jtn is slightly larger than that of ATFP because the two components of ATFP,

productivity, and quality, are negatively related, as will be clear in Section 6.
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the dominant force that drives the ATFP dispersion is productivity.37

Overall, our estimation results reflect reasonable parameter estimates and productivity and quality

measures at the firm-product level. In the following sections, we turn to use these measures to

explore the role of productivity and quality in shaping intra-firm performance heterogeneity.

6 Intra-firm Heterogeneity: the Role of Productivity and Quality

Given that the structural parameters are reasonably estimated and the rich distributions of

productivity and quality demonstrate remarkable heterogeneity even within narrowly defined

product lines, we now explore the pivotal question of what crucial new understandings about

multi-product firms emerge from our analysis.

We uncover three noteworthy insights about multi-product firms. First, in Section 6.1, we examine

how the heterogeneity in productivity and quality at the firm-product level influences within-firm

relative performance across various products. Second, in Section 6.2, we establish a negative

relationship at the firm-product level between these two dimensions of heterogeneity by estimating

a trade-off between productivity and quality (i.e., the cost of quality). Lastly, our investigation

reveals that quality-adjusted productivity, which accounts for both the costs and benefits of

quality, exhibits a positive correlation with product quality. This analysis profoundly enriches our

understanding of how production is organized within firms and sheds light on the key factors that

shape intra-firm heterogeneity.

6.1 Productivity, Quality, and Product Rank

The literature traditionally emphasizes the role of productivity in explaining the growth and

performance of firms and industries (e.g., Jovanovic, 1982; Hopenhayn, 1992; Ericson and Pakes,

1995; Melitz, 2003). Recently, a growing literature shows that demand is equally, if not more,

important for firm turnover and growth (e.g., Foster et al., 2008; Pozzi and Schivardi, 2016; Kumar

and Zhang, 2019). However, this strand of the literature usually focuses on across-firm analysis

using firm-level data.

Taking into account the joint nature of production in multi-product firms, our estimation method

allows us to uncover rich, flexible dimensions of heterogeneity within firms and explore the role

37Note that the demand heterogeneity (i.e., ξ̃jtn) enters ATFP as 1
ηn−1

ξ̃njt according to the definition of consumer

utility (1). As a result, the adjustment due to the demand elasticity (as in 1
ηn−1

) lowers its contribution to the

dispersion of ATFP. Nonetheless, ξ̃jtn itself demonstrates a much higher degree of dispersion than that of ω̃jtn

(interquantile range of 5.8 vs. 2.8, respectively). The relatively larger dispersion of ξ̃jtn is consistent with the findings
emphasizing the importance of demand heterogeneity in firm performance in the literature (e.g., Eslava et al., 2023).
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of productivity and demand at the firm-product level. Specifically, we estimate the following

regression equation to explore the relationship between the within-firm product rank of sales and

firm-product-level productivity and quality:

Log product rank, salesjtn = αω̃ω̃jtn + αξ̃ ξ̃jtn +Djn +Djt +Dtn + ϵjtn, (22)

where the product rank (in logarithm) is defined based on the sales of products within firm-year

pairs.38 The rank of the top product (i.e., with the largest sales) is 1. An increase in rank

indicates a product further away from the core competency of a firm. We include Djn, Djt, and

Dtn as firm-product, firm-year, and product-year fixed effects, respectively, to capture different

characteristics other than productivity and quality that vary at these levels and influence the

product rank. This rich set of fixed effects is feasible due to the multiple-product nature of our

dataset and helps minimize the problem of endogeneity that may be caused by missing variables,

which is more likely to occur in across-firm analyses in which a less flexible set of fixed effects can

be used.39

Table 4: Product rank (by sales level), productivity and quality

Dep. var.: (1) (2) (3) (4)
Log product rank, sales All Footwear Printing Pharmaceutical

Productivity -0.602*** -0.577*** -0.773*** -0.628***
(0.140) (0.168) (0.176) (0.209)

Quality -0.170*** -0.218*** -0.175*** -0.253***
(0.049) (0.027) (0.063) (0.051)

Firm-Product FE yes yes yes yes
Firm-Year FE yes yes yes yes
Product-Year FE yes yes yes yes

Observations 9638 398 2981 6259
R-squared 0.887 0.950 0.916 0.884

Note: The dependent variable is the log of product rank based on sales within firm-year pairs.
Bootstrapped standard errors clustered at the firm level and stratified by industry and scope are
shown in parentheses (250 repetitions). *** p < 0.01.

38Equation (22) examines the relationship between product rank on the one hand and productivity and quality
on the other by using product rank as the dependent variable. The purpose of the regression is to study directly the
relative importance of productivity and quality for differences in sales across products within firms. Alternative
regressions, usually with the purpose of investigating the gaps in productivity across products within firms, use
product rank as an explanatory variable (controlling for quality when using productivity as the dependent variable).
We report the results of the alternative regressions in Table A5 in the Appendix, which are in line with the results
in the literature (e.g., Eckel and Neary, 2010; Mayer et al., 2014; Orr, 2022).

39The importance of using a flexible set of fixed effects will be more apparent when we estimate the cost of quality
in Section 6.2.
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The regression results are presented in Table 4. As anticipated, products closer to firms’ core

competence (i.e., with a lower rank value) have both higher productivity and quality. This is

consistent with the literature that has theoretically postulated cost (i.e., productivity) or demand

(i.e., quality) as key determinants of such within-firm variation in sales (e.g., Berman et al., 2012;

Chatterjee et al., 2013; Mayer et al., 2014, 2021; Eckel et al., 2015; Arkolakis et al., 2021). Our

results provide empirical support to both of these hypotheses.

In a context similar to ours, Orr (2022) uses firm-product-level estimates to document revenue

efficiency gaps across products based on product rank. We depart from Orr (2022) by exploring

the relative importance of quantity-based productivity and quality as determinants of within-firm

heterogeneity. We show that, both in the overall sample as well as in each industry, productivity

has a stronger impact on intra-firm performance. In particular, Column (1) of Table 4 shows

that an increase of 1 percent in productivity and quality moves the rank of the product up by

0.602 percent and 0.170 percent, respectively, conditional on all other factors. Complementing

the greater emphasis on quality in shaping performance across firms (e.g., Roberts et al., 2018;

Kumar and Zhang, 2019), our result highlights that intra-firm performance is more influenced by

productivity than by quality.

Table 5: Product rank (by sales growth), and growth in productivity and quality

Dep. var.: (1) (2) (3) (4)
Log product rank, growth All Footwear Printing Pharmaceutical

∆ Productivity -1.232*** -0.591 -1.492*** -1.491***
(0.308) (0.377) (0.316) (0.490)

∆ Quality -0.339*** -0.358*** -0.335*** -0.617***
(0.117) (0.075) (0.120) (0.132)

Firm-Year FE yes yes yes yes
Product-Year FE yes yes yes yes

Observations 8311 307 2448 5556
R-squared 0.496 0.697 0.676 0.521

Note: The dependent variable is the log of product rank based on changes (growth) in sales be-
tween t and t− 1 within firm-year pairs. ∆ represents changes between t and t− 1. Bootstrapped
standard errors clustered at the firm level and stratified by industry and scope are shown in paren-
theses (250 repetitions). *** p < 0.01.

The robust pattern of productivity as a more important (compared to quality) determinant of

the relative performance of products within a firm also emerges when product rank is measured

in terms of the growth of sales within firms. The underlying question is which dimension is the
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dominant driving force of sales growth within firms over time. To answer this question, we examine

a regression equation similar to (22):40

Log product rank, growthjtn = βω̃∆ω̃jtn + βξ̃∆ξ̃jtn +Djt +Dtn + ϵjtn, (23)

where the product rank (in logarithm) is defined based on the growth rate of sales of products

within firm-year pairs. A higher rank value means a lower sales growth rate over time. Accordingly,

∆ω̃jtn and ∆ξ̃jtn are the growth rates of productivity and quality, respectively. Djt and Dtn are

firm-year and product-year fixed effects, respectively. The results of the regression are presented

in Table 5. As expected, growth in productivity and quality is positively associated with growth

in sales within a firm (as implied by the product rank of sales growth). However, consistent with

the pattern in Table 4 in terms of the rank based on the sales level, the sales growth rate is more

responsive to the growth of productivity than to the growth of quality. The footwear industry

stands as the only exception, where the coefficient of productivity growth is not statistically

different from zero (presumably due to the lower number of observations), despite its larger

magnitude compared to the coefficient of quality growth.

Overall, our analysis shows that, although both productivity and quality drive the performance

and sales growth of products within firms, productivity is a dominant determinant. This finding

suggests that when firms can optimally allocate resources to produce the most profitable products,

productivity, as an internal capability within firms, plays a more important role than quality

(demand), which can be heavily influenced by external market conditions.

6.2 Trade-off between Productivity and Quality

As both productivity and quality influence the intra-firm performance of a product, it is natural

to ask whether and how these different dimensions of within-firm heterogeneity are related. As a

starting point, Figure 2 presents the raw relationship between our two key estimated measures of

heterogeneity, i.e., (quantity-based) productivity (ω̃jtn) and quality (ξ̃jtn).
41 This raw correlation

is negative, consistent with the emerging literature (e.g., Grieco and McDevitt, 2017; Orr, 2022;

Li et al., 2023) highlighting the trade-off between these two dimensions of firm heterogeneity.

40We use the rank of sales growth (rather than the sale growth itself) because our purpose is to investigate the
intra-firm heterogeneity in growth performance. Also, note that this regression, (23), is not the first-order difference
version of (22) because the dependent variable is defined as the product rank based on the growth rate of sales
rather than as the change in the product rank.

41When we tease out the fixed effects at firm-product, firm-year, and product-year levels from ξ̃jtn to obtain a finer
measure of quality (i.e., ξjtn) as defined in Section 2, the correlation is also negative. Of course, the firm-product
fixed effects may contain parts of quality that only vary at the firm-product level. We find that the correlation is
robustly negative when we include the firm-product fixed effects as a part of the quality measure.
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Figure 2: The relationship between productivity and quality
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Overall, this empirical pattern suggests that producing higher-quality products increases the

marginal cost of production (by decreasing output quantity per unit of inputs, as highlighted in

Grieco and McDevitt, 2017), which in turn reduces (quantity-based) productivity.42 This is a

relationship between productivity and quality that we allow for in (4) of the model but do not

impose in our structural estimation. Consequently, this trade-off implies that (quantity-based)

productivity should not be modelled by an auto-regressive process because it is strongly correlated

with contemporaneous quality (or broadly, demand heterogeneity), which is endogenously influenced

by firm choices based on a rich set of state variables.

To further estimate the trade-off between the two dimensions within firms, we propose to estimate

a linear version of (4):

ω̃jtn = ωjtn − γξξjtn, (24)

where γξξjtn is interpreted as the cost (in terms of lowering productivity or raising marginal cost)

42Of course, this does not necessarily mean the correlation between (quantity-based) productivity and quality
must be negative. But it does imply that the correlation is pushed downwards in the presence of a quantity-quality
trade-off.
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of increasing quality, holding inputs fixed. Formally, γξ measures the elasticity of productivity

with respect to the change in quality. We refer to it as the cost-responsiveness of quality.

Because our estimated measure of quality, ξ̃jtn, comes as the residual demand from the demand

function (2), its variation across products, firms, and over time may be naturally influenced

by quality as well as demand heterogeneity such as demand conditions (e.g., macroeconomic

conditions and market size), firm-brand image, product measurement unit (e.g., grams vs. liters),

and firm-time specific measurement errors, as discussed in Section 2.1. In order to tease out the

actual impact of quality (ξjtn) from those potential confounding factors and control for unobserved

product and firm features, we include a flexible set of fixed effects in the regression analysis. More

importantly, the rich set of fixed effects allows us to use the variation of productivity and quality

over time within firm-product to avoid the potential bias caused by endogenous product selection

(e.g., firms with high technical efficiency endogenously choosing to produce high quality products).

Specifically, the following regression equation is an empirical representation of (24):

ω̃jtn = −γξ ξ̃jtn +Djn +Djt +Dtn + ϵjtn, (25)

where Djn, Djt, and Dtn are firm-product, firm-year, and product-year fixed effects, respectively.

ϵjtn contains technical efficiency (ωjtn) and thus can be endogenously related to ξ̃jtn if firms choose

to produce different quality products based on technical efficiency. In our implementation, we

estimate (25) using different sets of IVs and the richest set of fixed effects available to jointly

address the endogeneity problem.

The estimation results are presented in Table 6. The first three columns are Ordinary Least

Squares (OLS) regressions of firm-product-level productivity on quality with increasingly rich

specifications of the fixed effects. The comparison of the coefficient estimates in Columns (1)-(3)

suggests that it is important to control for unobserved fixed effects to minimize the potential

selection bias. In Columns (4)-(5), we use various instruments for the firm-product-level quality

while allowing for the most flexible specification of firm-product, firm-year, and product-year

fixed effects. In particular, in Column (4) the lagged quality of the same firm-product variety is

used as the instrument, whereas in Column (5) the instrument is the lagged average quality of all

other varieties (from other firms) of the same product. In Columns (6)-(9), we use both of these

instruments together for all industries together and each industry separately, respectively. In all

cases, the Kleibergen-Paap F test indicates a strong IV. In addition, the OLS result in Column

(3), which controls for the most flexible set of fixed effects, is close to the IV result in Column (6),
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suggesting that leveraging the rich fixed effects offered by the multiple-product context is effective

in controlling for unobservable covariates that influence both quality and productivity.43

Taken together, all the results in Table 6 indicate a negative trade-off between productivity and

quality at the firm-product level. In particular, Column (6) shows that, on average, a 1-percent

increase in quality lowers productivity (and thus increases marginal cost) by 0.198 percent, holding

all other variables fixed.44 This estimate is close to other estimates obtained using different

approaches in various industries and countries. For example, Jaumandreu and Yin (2014) find

strong negative correlations (ranging from -0.99 to -0.59, by industry) between their measures

of cost advantage and demand advantage of exporters in the Chinese manufacturing industries.

Grieco and McDevitt (2017) show that reducing a healthcare center’s quality standards can

increase its patient load, and they document a quality-quantity (number of patients) trade-off

elasticity of -0.2 in the dialysis industry in the United States. Atkin et al. (2019) find that firms

that make lower quality rugs produce more quickly among rug-makers in Egypt, demonstrating

a reverse correlation between quantity productivity and quality productivity with an elasticity

of -0.40. Orr (2022) estimates firm-product level measures of productivity and “product appeal”

from the Indian machinery manufacturing industry and finds a negative correlation of about -0.28

between them. Using an objective output quality measure, Li et al. (2023) find that about half

of the benefit created by quality is offset by the cost of producing the quality in the Chinese

steel-making industry. Forlani et al. (2023) document an even stronger negative correlation

(about -0.9) between demand and quantity-based productivity at the firm level in various Belgian

manufacturing industries, suggesting a trade-off between the quality of a firm’s products and their

production cost.

Next, we further investigate the heterogeneity of the cost of quality across the product space

and throughout the life cycle of products. First, we explore the relationship between the cost

of quality and product differentiation, extending equation (25) to allow for variation in the

cost-responsiveness of quality based on the elasticity of demand. The elasticity of demand (i.e.,

η), which varies at the product level, is estimated and presented in Table 3. A lower elasticity of

demand indicates a higher degree of differentiation among product variety offered by different

43Firm-product fixed effects may contain parts of quality that only vary at the firm-product level. In an
unreported regression, we exclude the firm-product fixed effects from the control variables and find that the results
are quantitatively similar to the results in Table 6.

44The estimated cost of quality is significant, but not excessive. Taking into account the estimated demand
elasticities, a simple accounting exercise shows that an increase in quality still leads to an improvement in revenue.

40



T
ab

le
6:

C
os
t
of

q
u
al
it
y

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

D
ep

.
va
r.
:
P
ro
d
u
ct
iv
it
y

O
L
S

O
L
S

O
L
S

IV
IV

IV
IV

IV
IV

F
o
o
tw

ea
r

P
ri
n
ti
n
g

P
h
a
rm

ac
eu

ti
ca
l

Q
u
a
li
ty

-0
.1
2
2
**

*
-0
.1
83

**
*

-0
.2
04

**
*

-0
.1
97

**
*

-0
.2
04

**
*

-0
.1
98

*
**

-0
.2
36

**
*

-0
.1
82

**
*

-0
.2
16

**
*

(0
.0
42

)
(0
.0
3
0)

(0
.0
37

)
(0
.0
30

)
(0
.0
52

)
(0
.0
30

)
(0
.0
7
3)

(0
.0
5
8)

(0
.0
30

)

F
ir
m

F
E

n
o

ye
s

n
o

n
o

n
o

n
o

n
o

n
o

n
o

P
ro
d
u
ct

F
E

n
o

y
es

n
o

n
o

n
o

n
o

n
o

n
o

n
o

Y
ea
r
F
E

n
o

ye
s

n
o

n
o

n
o

n
o

n
o

n
o

n
o

F
ir
m
-P

ro
d
u
ct

F
E

n
o

n
o

ye
s

ye
s

ye
s

y
es

ye
s

ye
s

ye
s

F
ir
m
-Y

ea
r
F
E

n
o

n
o

ye
s

ye
s

y
es

ye
s

ye
s

ye
s

ye
s

P
ro
d
u
ct
-Y
ea
r
F
E

n
o

n
o

ye
s

ye
s

ye
s

ye
s

ye
s

y
es

ye
s

O
b
se
rv
a
ti
o
n
s

11
0
21

1
10

20
96

38
81

60
81

60
81

60
2
92

2
36

5
55

03
R
-s
q
u
a
re
d

0.
06

1
0
.7
3
3

0.
99

5
0.
79

8
0.
79

9
0.
79

8
0.
6
06

0
.9
0
0

0.
6
79

K
le
ib
er
ge
n
-P
a
ap

F
16

6.
82

7
19

.4
68

83
.6
27

6.
0
37

28
.1
7
5

93
.4
9
5

H
a
n
se
n
J

0.
36

3
1.
6
09

1
.6
1
9

0.
4
91

N
o
te
:
T
h
e
d
ep

en
d
en
t
va
ri
a
b
le

is
q
u
a
n
ti
ty
-b
a
se
d
p
ro
d
u
ct
iv
it
y
a
t
th
e
fi
rm

-p
ro
d
u
ct
-y
ea
r
le
v
el
.
T
h
e
in
st
ru
m
en
ta
l
va
ri
a
b
le

in
co
lu
m
n
(4
)
is

la
g
g
ed

q
u
a
li
ty
.
T
h
e
in
st
ru
m
en
ta
l
va
ri
a
b
le

in
co
lu
m
n
(5
)
is

la
gg

ed
av
er
ag

e
q
u
al
it
y
of

al
l
ot
h
er

va
ri
et
ie
s
of

th
e
sa
m
e
p
ro
d
u
ct
.
T
h
e
in
st
ru
m
en
ta
l
va
ri
ab

le
s

in
co
lu
m
n
s
(6
)-
(9
)
a
re

la
g
g
ed

q
u
a
li
ty

a
n
d
la
g
g
ed

av
er
a
g
e
q
u
a
li
ty

o
f
a
ll
o
th
er

va
ri
et
ie
s
o
f
th
e
sa
m
e
p
ro
d
u
ct
.
T
h
e
K
le
ib
er
g
en

-P
a
a
p
F
is

a
w
ea
k

id
en
ti
fi
ca
ti
on

te
st
.
T
h
e
H
an

se
n
J
is

a
te
st

of
ov
er
id
en
ti
fy
in
g
re
st
ri
ct
io
n
s.

B
o
ot
st
ra
p
p
ed

st
an

d
ar
d
er
ro
rs

cl
u
st
er
ed

at
th
e
fi
rm

le
ve
l
an

d
st
ra
ti
fi
ed

b
y

in
d
u
st
ry

a
n
d
sc
op

e
ar
e
sh
ow

n
in

p
ar
en
th
es
es

(2
50

re
p
et
it
io
n
s)
.
**

*
p
<

0
.0
1,

**
p
<

0
.0
5,

*
p
<

0.
10

5.

41



firms. As shown in Column (1) of Table 7, we observe that products with lower elasticities of

demand face a more expensive trade-off between productivity and quality. This finding implies

that the production of high-quality levels for more differentiated products entails increased costs.

Specifically, Column (1) reveals that a 1-unit increase in the elasticity of demand results in a 2.3

percentage point rise in the cost-responsiveness of quality, which implies an increase by 7.4 percent

in the overall impact of quality on productivity.45 Considering that the cost of quality contributes

to the marginal cost of production, our result suggests that firms producing high-quality products

tend to charge higher prices, particularly if their products exhibit higher degrees of differentiation.

This finding aligns with the conclusions drawn by Eckel et al. (2015), who demonstrate that

product differentiation enhances the importance of quality in determining core competence.

Table 7: Cost of quality, by product differentiation and age

(1) (2) (3)
Dep. var.: Productivity IV IV IV

Quality -0.310*** -0.223*** -0.328***
(0.038) (0.039) (0.040)

Quality × η 0.023*** 0.022***
(0.007) (0.007)

Quality × Age, log 0.013** 0.012**
(0.007) (0.005)

Age, log -0.007 -0.039
(0.105) (0.082)

Firm-Product FE yes yes yes
Firm-Year FE yes yes yes
Product-Year FE yes yes yes

Observations 8160 8160 8160
R-squared 0.823 0.801 0.826
Kleibergen-Paap F 21.056 40.989 14.186
Hansen J 9.042 1.457 11.100

Note: The dependent variable is quantity-based productivity at the firm-product-year level. The
variable “Age” is calculated as the number of years since the first year in which a product variety
appears in the data. The instrumental variables in column (1) are lagged quality, lagged average
quality of all other varieties of the same product, and their interactions with the elasticity of sub-
stitution, η. The instrumental variables in column (2) are lagged quality, lagged average quality
of all other varieties of the same product, and their interactions with log age. The instrumental
variables in column (3) are all those included in columns (1) and (2). The Kleibergen-Paap F is
a weak identification test. The Hansen J is a test of overidentifying restrictions. Bootstrapped
standard errors clustered at the firm level and stratified by industry and scope are shown in paren-
theses (250 repetitions). *** p < 0.01, ** p < 0.05.

45This is calculated as the ratio of the coefficient on quality × η over that on quality, 0.023
0.310

.
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Second, we investigate how the trade-off between productivity and quality evolves with the age

of a product within a firm. To do so, we expand equation (25) to incorporate an interaction

term between quality and the logarithm of product age, in addition to considering product age

on its own. For each product-firm pair, product age is defined as the number of years since the

initial appearance of the product variety in the sample. Column (2) of Table 7 presents the

results of our analysis. The positive coefficient observed for the interaction between quality and

product age indicates that the trade-off between productivity and quality becomes attenuated

as a firm continues to produce a specific product for a longer duration. Essentially, firms that

have accumulated substantial experience in manufacturing a particular product demonstrate

improved production management capabilities, enabling them to achieve higher quality levels

without compromising efficiency. Based on the estimate in Column (2), a simple calculation

reveals that a 5-year experience in product manufacturing leads to approximately a 2.3 percentage

point reduction in the impact of quality on productivity, which implies a decrease by 10.4 percent

in the overall impact of quality on productivity.46

It is worth noting that the aforementioned results remain robust even when we simultaneously

include the interactions between quality and the elasticity of demand, as well as between quality

and product age, as depicted in Column (3) of Table 7. This robustness strengthens our confidence

in the validity of the findings and underscores the significance of demand elasticity and product

age in influencing the cost of quality.

Overall, the results obtained above demonstrate a robust negative relationship between quality and

quantity-based productivity. However, when considering quality and quality-adjusted productivity

(ATFP) which takes into account both the costs and benefits of quality as indicated by its definition

in (21), a significantly positive relationship emerges. In Table 8, Columns (2)-(4) present the

correlation coefficients between ATFP and quality at the firm-product level, which are 0.906,

0.334, and 0.592 for the three industries, respectively. This positive relationship is intuitive. While

the cost of quality tends to lower ATFP as quality increases, the benefits of quality contribute to

a positive association with ATFP. The dominance of the latter force results in an overall positive

relationship between ATFP and quality. This finding aligns with previous analyses that emphasize

firms with high production capability choose to produce high-quality output endogenously (e.g.,

Verhoogen, 2008; Kugler and Verhoogen, 2009, 2012; Feenstra and Romalis, 2014; Hottman et al.,

2016; Fan et al., 2018). Our results not only highlight the positive sorting within firms but

46The calculation of the level of the impact is: 0.013× (log(5+1)− log(1)) = 0.023. Relative to the overall impact

of quality on productivity, the calculation is: 0.013×(log(5+1)−log(1))
0.223

= 0.104.
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also indicate that it is conditional upon acknowledging both the increasing cost and benefit of

producing higher-quality products. This observation is consistent with the findings of Li et al.

(2023), who utilize a firm-level objective quality measure from the Chinese steel industry, rather

than using an estimated demand residual as a proxy for quality.

Table 8: Correlation between quality and ATFP

(1) (2) (3) (4)
Quality All Footwear Printing Pharmaceutical

ATFP 0.440*** 0.906*** 0.334*** 0.592***
(0.084) (0.053) (0.116) (0.102)

Note: The table reports the correlation coefficients are controlling for product and firm-year fixed
effects. Bootstrapped standard errors clustered at the firm level and stratified by industry and
scope are shown in parentheses (250 repetitions). *** p < 0.01.

Overall, our analysis on productivity and quality highlights the significance of considering the

cost of quality and the relationship between these variables at the firm-product level. Importantly,

a notable implication arises from the relationship: reducing the cost of quality (e.g., through long

experience in production) not only contributes directly to an increase in the ATFP of a firm but

also indirectly stimulates growth through intra-firm resource reallocation towards the production

of higher-quality products, which subsequently enhances the firm’s ATFP further. In the following

section, we shift our focus to evaluating the cost of quality and study the role of product scope

in firm growth through intra-firm resource reallocation resulting from a reduction in the cost of

quality.

7 How Costly is Quality?

The results regarding the cost of quality are meaningful because they imply that a reduction in

the cost-responsiveness of quality can lead to growth in ATFP. Intuitively, conditional on the

underlying technical efficiency (i.e., ω) and product quality, a reduction of the cost-responsiveness

of quality (i.e., γξ) means a direct increase in quantity-based productivity (i.e., ω̃) according

to (24) and, thus, a corresponding increase in ATFP as defined in (21). More importantly, the

impact on higher-quality products is larger for a given reduction in the cost responsiveness of

quality. Thus, in the short run, multi-product firms can endogenously reallocate resources towards

high-quality and high-productivity products, which consequently improves ATFP at the firm

level. In addition, considering that product quality is endogenously chosen by firms based on

productivity as emphasized in the literature (e.g., Verhoogen, 2008; Kugler and Verhoogen, 2009,
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2012; Feenstra and Romalis, 2014; Fan et al., 2018), a cost of quality reduction implies an incentive

for quality upgrading, thus increasing ATFP even further in the long run.

Our static empirical model does not allow us to estimate the endogenous reaction of quality

choices in the long run, thus we focus on investigating the short-run effect of a reduction in the

cost-responsiveness of quality, keeping the quality choices fixed.47 To this end, we highlight the

role of product scope in shaping productivity gains due to resource reallocation within firms. We

conduct a counterfactual exercise by reducing the cost-responsiveness of quality and comparing the

resulting ATFP at the firm level against that from the baseline scenario (i.e., with no reduction in

the cost of quality). The improvement in ATFP is decomposed into a direct increase of ATFP

due to the reduced cost of quality and intra-firm resource reallocation.

Specifically, in the counterfactual scenario, we reduce the cost-responsiveness of quality (γξ)

by 1 percent for all firm-product pairs. This leads to a direct improvement in quantity-based

productivity: ω̃′
jtn = ω̃jtn + 0.01× γξξjtn, where ω̃

′
jtn is the counterfactual productivity and ω̃jtn

and ξjtn are the baseline quantity-based productivity and quality, respectively. Here γξ denotes

the estimated cost-responsiveness of quality specific to each industry and reported in Columns

(7)-(9) of Table 6. The direct improvement in quantity-based productivity drives an increase in

ATFP at the firm-product level according to (21).48

More interestingly, there is an indirect improvement in firm-level ATFP due to intra-firm resource

reallocation across products for multi-product firms. To see this mechanism, note that the 1-percent

decline in γξ leads to a differential improvement in the counterfactual productivity across products

within firms, depending on the baseline quality level (ξjtn). For a product with higher quality, the

resulting productivity improvement due to the reduction in the cost responsiveness of quality is

larger. As a result, firms can react to the differential productivity improvement by re-optimizing

their intra-firm allocation of inputs and outputs. Because ATFP and quality are positively related

as documented in Section 6, multi-product firms tend to reallocate more production resources

to products with higher ATFP and higher quality. Consequently, this reallocation leads to an

indirect improvement in firm-level ATFP.

Both the direct and indirect improvements contribute to the increase in firm-level ATFP. To

understand their magnitude and relative importance, we aggregate firm-level ATFP from firm-

47Thus, our results regarding the evaluation of the cost of quality in this section should be interpreted as the
lower bound of the actual impact on firm performance.

48Throughout the analysis, we treat all the dynamic decisions (i.e., product quality, scope, and investment)
described in Section 2.4 as fixed.
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product-level ATFP using sales as weights. We apply the within-industry across-firm decomposition

proposed by Olley and Pakes (1996) to compute the intra-firm decomposition. That is, for each

firm j in period t,

ATFPjt = ATFPjt +
∑
n∈Λjt

(sjtn − sjt)(ATFPjtn −ATFPjt), (26)

where ATFPjt is the simple average of the exponent of quality-adjusted productivity, ATFPjtn,

across products produced by the same firm. sjtn is the within-firm sales share of product n by

firm j in period t. sjt is the simple average of the sales shares (that is, the inverse of the product

scope). Intuitively, an increase in firm-level ATFP can be caused by an increase in ATFP of all

products as well as a reallocation of resources towards more productive products. Accordingly,

intra-firm resource reallocation is defined as the difference of the covariance term (the second term

on the right-hand side) in (26) between the counterfactual scenario and the baseline scenario. To

obtain the overall improvement in ATFP at the industrial level, we aggregate firm-level ATFP

improvement using firms’ total sales as weights. The relative contribution of intra-firm resource

reallocation to the firm-level ATFP improvement is aggregated to the industry level in the same

way.

Table 9: Impact of 1-percent reduction in cost-responsiveness of quality on ATFP

All firms MPF only
Industry All Footwear Printing Pharmaceutical All

Total improvement, percent 2.562 1.202 2.711 2.670 2.653
(0.249) (0.357) (0.412) (0.301) (0.269)

Intra-firm reallocation,
percent 0.777 0.121 0.434 0.890 0.907

(0.103) (0.036) (0.119) (0.126) (0.119)
percentage relative to total 30.3 10.0 16.0 33.3 34.2

(4.2) (1.9) (3.9) (5.0) (4.8)

Note: The improvement in ATFP at the industry level is measured in percentage and calculated
as the weighted average of the improvements in ATFP at the firm-year level with firms’ total sales
in the baseline scenario as weights. Bootstrapped standard errors clustered at the firm level and
stratified by industry and scope are shown in parentheses (250 repetitions).

Table 9 reports the overall improvement in firm-level ATFP as well as the contribution from the

intra-firm resource reallocation of multi-product firms in the three industries. A 1-percent decline

in the cost-responsiveness of quality leads to an improvement in ATFP by more than 1.2, 2.7,

and 2.6 percent for the footwear, printing, and pharmaceutical industries, respectively. This is a

sizable magnitude. More importantly, the contribution of the within-firm resource reallocation
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accounts for roughly 10 percent to 33 percent of the overall improvement in ATFP across the three

industries, as reported in Table 9. This is essentially a lower bound of the contribution because the

calculation is based on all firms including the single-product firms that experience, by definition,

zero within-firm reallocation. When focusing on multi-product firms only, the contribution is

on average approximately 34 percent across the three industries. This result establishes the

economic significance of the cost of quality within multi-product firms as a channel impacting

overall quality-adjusted productivity.

A large literature on resource reallocation focuses on across-firm analysis and shows that much

of the aggregate productivity growth is attributable to the resource reallocation towards more

productive firms (e.g., Baily et al., 1992; Bartelsman and Doms, 2000; Baily et al., 2001; Aw

et al., 2001; Foster et al., 2006, 2008; Syverson, 2011; Collard-Wexler and De Loecker, 2015).

Complementary to the literature, our firm-product-level analysis shows that the contribution of

within-firm resource reallocation is also sizable. Interestingly, compared to the footwear industry,

the relatively higher intra-firm contribution in the printing and pharmaceutical industries is

consistent with the relatively larger number of products in these industries. Indeed, as shown

in Table 1, firms in the printing and pharmaceutical industries produce 3.7 and 6.9 products on

average, respectively, while firms in the footwear industry produce 1.3 products. Intuitively, a

larger product scope allows for a greater potential to reallocate resources across products.

Figure 3: Contribution of within-firm resource reallocation to ATFP growth
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Notes: All firms producing more than 10 products are clustered in the “10+” group.

To unpack such a heterogeneous pattern, we group firms by the number of products produced and

compute the sales-weighted average contribution of intra-firm resource reallocation to firm-level

ATFP improvement (due to the reduction in the cost of quality). This computation is conducted
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for each industry. We plot the relationship between product scope and the contribution of intra-

firm reallocation (in percentage) in Figure 3.49 Each dot represents the average contribution of

within-firm reallocation by product scope and industry. The dashed line represents the fitted

line obtained from a simple OLS regression of within-firm reallocation against product scope.

The upward-sloping fitted line establishes that, on average, the role of within-firm reallocation

increases in firms with a larger scope with more room for within-firm adjustment. The slope of the

fitted line suggests that producing one more product can increase the contribution of within-firm

reallocation in improving ATFP by 7 percent. In sum, our results highlight that multi-product

firms with larger scope experience larger productivity gains when the cost of quality is lower. This

reveals a new mechanism for enhancing the performance of multi-product firms.

8 Conclusion

Multi-product firms account for a significant share of our economy. Yet, the traditional firm-

level analysis in the literature masks the intra-firm heterogeneity. In this paper, we propose a

novel method to estimate firm-product-level productivity and quality along with demand and

transformation function parameters. Compared with the existing methods in the literature, our

method does not impose assumptions on how inputs are allocated across the production of different

products within firms nor restrictions on how productivity evolves over time. Importantly, the

method can be easily scaled up to estimate production functions with a large number of products,

without relying on the availability of productivity proxies. Finally, the method accounts for

heterogeneous intermediate input prices that are usually unobservable to researchers and lead to

biased estimation results when ignored.

We apply our method to three major industries in the Mexican manufacturing sector. We find

that, in contrast to the emphasis on the role of quality (demand) in explaining the across-firm

performance heterogeneity in the literature, productivity is a dominant force that drives the

intra-firm revenue heterogeneity. However, firms face a trade-off between upgrading quality and

productivity, which we define as the cost of quality. Such cost of quality is highly heterogeneous

across products and changes over time. The impact of producing high-quality products is larger

for products with higher degrees of differentiation; but, over time, the impact decreases when firms

produce the products for a longer time. After taking both the costs and benefits of quality into

account, the recovered quality-adjusted productivity shows a strong positive intra-firm correlation

with quality.

49The relationship is similar when the figure is plotted by industry. This suggests that although product scope is
not directly comparable across industries, the pattern reflected in the figure is robust.

48



To understand how costly quality is for productivity growth and intra-firm resource allocation,

we conduct a counterfactual exercise where we reduce the cost-responsiveness of quality by 1

percent. We show that the reduction can lead to substantial productivity gains, especially for

multi-product firms. Importantly, a sizable portion of the productivity gain of multi-product firms

is due to the within-firm reallocation of resources towards more-productive and higher-quality

products. In particular, we show that a larger product scope allows more room for intra-firm

resource reallocation, leading to a higher productivity gain when there is a reduction in the cost

of quality. This result establishes the quantitative significance of intra-firm resource reallocation

in enhancing the performance of multi-product firms that dominate manufacturing production.

This channel, thus, has strong potential implications for aggregate productivity growth.
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Appendices

A Additional Figures and Tables

Table A1: Product list, manufacturing of footwear, mainly of leather (class 324001)

Industry Product description Code

324001 Cow leather, for men 1
324001 Cow leather, for women 2
324001 Cow leather, for kids 3
324001 Others 99

Table A2: Product list, printing and binding (class 342003)

Industry Product description Code

342003 Printing of Calendars and almanacs 5
342003 Folding boxes 6
342003 Labels and prints 13
342003 Brochures and catalogs 14
342003 Continuous forms 15
342003 Accounting, administrative and tax forms 16
342003 Telephone directories 17
342003 Books 18
342003 Journals 19
342003 Checks 21
342003 Commemorative and business cards 23
342003 Commercial flyers 24
342003 Posters 25
342003 Others 99
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Table A3: Product list, manufacturing of pharmaceutical products (class 352100)

Industry Product description Code

352100 Medicinal products, for human use with a specific action, anti-infectious: Bactericides 11
352100 Antiparasitics 13
352100 Dermatological 15
352100 Other products with specific action not included in other categories 19
352100 Medicinal products for human use for specialties with action on: Circulatory system 21
352100 Digestive system and metabolism 22
352100 Human musculoskeletal system 23
352100 Respiratory system 24
352100 Sensory organs 25
352100 Genitourinary organs, except hormones 26
352100 Blood and hematopoietic organs 27
352100 Central nervous system 28
352100 Hormones 32
352100 Vitamins and Vitamin Compounds 43
352100 Non-therapeutic products 59
352100 Others 99

Table A4: Within-firm product shares by product scope

Product rank (by sales level)
Product scope 1 2 3 4 5+

1 1.000
2 0.783 0.217
3 0.675 0.238 0.087
4 0.560 0.283 0.117 0.040
5+ 0.443 0.204 0.124 0.083 0.146

Note: All firm-year pairs producing 5 products or more are clustered in the “5+” group. All
products ranked 5 or lower are clustered in the “5+” group.

Table A5: Productivity, quality, and product rank (by sales level)

(1) (2) (3) (4)
Dep. var.: Quality Productivity Productivity ATFP

Product rank -0.489*** 0.039*** -0.069*** -0.128***
(0.043) (0.006) (0.020) (0.033)

Quality -0.221***
(0.052)

Firm-Product FE yes yes yes yes
Firm-Year FE yes yes yes yes
Product-Year FE yes yes yes yes

Observations 9638 9638 9638 9638
R-squared 0.892 0.974 0.996 0.997

Note: The dependent variable is the log of quality at the firm-product-year level in Column (1),
the log of productivity at the firm-product-year level in Columns (2)-(3), and quality-adjusted
productivity (ATFP) at the firm-product-year level in Column (4). Bootstrapped standard errors
clustered at the firm level and stratified by industry and scope are shown in parentheses (250
repetitions). *** p < 0.01.

55



Figure A1: Distribution of quality-adjusted productivity, ATFP
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Notes: ATFP is demeaned, and only products with at least 100 observations are included.

Figure A2: Distribution of productivity, ω̃
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Notes: ω̃ is demeaned, and only products with at least 100 observations are included.
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Figure A3: Distribution of quality, ξ̃
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Notes: ξ̃ is demeaned, and only products with at least 100 observations are included.
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B Monte Carlo Exercises

In this appendix, we present the results of Monte Carlo exercises to demonstrate the performance
of our estimation method.

In this Monte Carlo setting, the choice of product sets is exogenous and random. Wage rate,
material prices, and capital stock are serially correlated.50 The levels of productivity and quality
of any given product are not only serially correlated over time but also negative correlated with
each other. With this setting, the Monte Carlo exercises consist of N replications of simulated
data sets of J firms in T years, given a set of true parameters of interest for 5 products, namely,
(η1, η2, η3, η4, η5, αL, αM , αK , σ, ρ).

Specifically, in each replication, we simulate productivity (ω̃jtn) and quality (ξ̃jtn) for each product
n, firm j, and time t. We also simulate the wage rate (PLjt), the material price (PMjt) and the
capital stock (Kjt) for each firm j and time t. All of these variables are serially correlated. In
addition, we simulate the negative relationship between productivity and quality as documented in
the paper by allowing for a negative correlation r between the shocks in their evolution processes.
Specifically, the evolution process of each of these variables for each firm follows an AR(1) process:

ω̃jtn = gn0ω + gnωω̃jt−1n + εωjtn, ∀n,

ξ̃jtn = gn0ξ + gnξ ξ̃jt−1n + εξjtn, ∀n,

ln(PLjt) = g0ℓ + gℓ ln(PLjt−1) + εℓjt,

ln(PMjt) = g0m + gm ln(PMjt−1) + εmjt ,

ln(Kjt) = g0k + gk ln(Kjt−1) + εkjt,

where ε is the innovation shock realized in period t, which is assumed to be a normally distributed
error term with zero mean and standard deviation sd(ε). While the shocks in the processes of PLjt,
PMjt, and Kjt are i.i.d., those of ω̃jtn and ξ̃jtn are correlated with a coefficient of r. Although
the evolution of the capital stock is exogenous in this setup, the Monte Carlo result is similar if
investment (and hence the capital stock) depends on productivity and quality levels.

Given these variables, we use the firm’s static profit maximization problem to derive a sequence of
optimal choices of labor and material inputs (Ljt and Mjt), the optimal output quantity (Qjtn)
and price (Pjtn) for firm j and product n in each period t.

In this way, we generate a data set of variables for the Monte Carlo experiments. Among them,
we use the following variables for the estimation procedure (including the sets of IVs) described
in Section 3: {Qjt1, . . . , Qjt5, Rjt1, . . . , Rjt5,Kjt, Ljt, ELjt , EMjt}. The values of the parameters
used for the data generation process are reported in Table A6. The mean estimates of the key
parameters, together with their corresponding standard errors, are reported in Table A7. Overall,
the result shows that our estimation recovers the true parameters of the production and demand
functions well.

50The Monte Carlo result is similar if the evolution of capital stock depends on an investment rule which is a
function of capital stock and the levels of productivity and quality.
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Table A6: Monte Carlo Parameter Values

Parameter Description Value

η1, η2, η3, η4, η5 Demand elasticities 7, 6, 5, 4, 3
σ Elasticity of substitution 2
αL Distribution parameter of labor 0.2
αM Distribution parameter of material 0.6
αK Distribution parameter of capital 0.2

g1ω, g
2
ω, g

3
ω,g

4
ω, g

5
ω Persistence parameters in productivity evolution 0.75, 0.7, 0.65, 0.6, 0.55

g1ξ , g
2
ξ , g

3
ξ ,g

4
ξ , g

5
ξ Persistence parameter in quality evolution 0.75, 0.7, 0.65, 0.6, 0.55

gl Persistence parameter in wage rate evolution 0.8
gm Persistence parameter in material price evolution 0.8
gk Persistence parameter in capital evolution 0.8
r Correlation between productivity and quality shocks -0.2

sd(εω) Standard deviation of productivity shock 0.02
sd(εξ) Standard deviation of quality shock 0.02
sd(εℓ) Standard deviation of wage rate shock 0.1
sd(εm) Standard deviation of material price shock 0.1
sd(εk) Standard deviation of capital stock shock 0.1
sd(u) Standard deviation of revenue measurement error (u) 0.01
T Number of periods 15
J Number of firms 400
N Number of Monte Carlo replications 300
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Table A7: Monte Carlo Estimates of Production and Demand Function Parameters

Parameter True Estimate

η1−1
η2−1 1.200 1.199

(0.021)
η1−1
η3−1 1.500 1.499

(0.027)
η1−1
η4−1 2.000 1.999

(0.037)
η1−1
η5−1 3.000 3.002

(0.053)

αL 0.200 0.200
(0.002)

αM 0.600 0.600
(0.001)

αK 0.200 0.200
(0.002)

σ 2.000 2.000
(0.010)

ρ 1.100 1.101
(0.009)

η1 7.000 7.000
(0.350)

η2 6.000 6.003
(0.254)

η3 5.000 5.001
(0.204)

η4 4.000 4.002
(0.157)

η5 3.000 2.998
(0.102)

Note: The parameter estimates are re-
ported as the mean estimates from the
Monte Carlo simulations. Standard er-
rors in parentheses are computed as the
standard deviation of the estimates.
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